tarrasyed19472007 commited on
Commit
417ae68
·
verified ·
1 Parent(s): fd6cb76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -1,6 +1,5 @@
1
- !pip install streamlit transformers PyPDF2 faiss-cpu
2
  import streamlit as st
3
- import PyPDF2 # Now PyPDF2 should be found
4
  from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
5
 
6
  # Load PDF and extract text
@@ -22,8 +21,11 @@ def initialize_rag_model():
22
 
23
  # Process user query
24
  def generate_answer(query, context, tokenizer, retriever, model):
 
25
  inputs = tokenizer(query, return_tensors="pt")
26
- inputs["context_input_ids"] = retriever(context, return_tensors="pt")["input_ids"]
 
 
27
  outputs = model.generate(**inputs)
28
  answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
29
  return answer[0]
@@ -31,7 +33,7 @@ def generate_answer(query, context, tokenizer, retriever, model):
31
  # Streamlit UI
32
  st.title("PDF Question-Answer Chatbot")
33
 
34
- uploaded_file = st.file_uploader("/content/Rag Comprehensive notes with example.pdf", type=["pdf"])
35
  if uploaded_file is not None:
36
  text = load_pdf(uploaded_file)
37
  st.write("PDF loaded successfully. You can now ask questions.")
 
 
1
  import streamlit as st
2
+ import PyPDF2
3
  from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
4
 
5
  # Load PDF and extract text
 
21
 
22
  # Process user query
23
  def generate_answer(query, context, tokenizer, retriever, model):
24
+ # Retrieve the relevant documents
25
  inputs = tokenizer(query, return_tensors="pt")
26
+ # Get the context input IDs from the retriever
27
+ context_input_ids = retriever(context, return_tensors="pt")["input_ids"]
28
+ inputs["context_input_ids"] = context_input_ids
29
  outputs = model.generate(**inputs)
30
  answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
31
  return answer[0]
 
33
  # Streamlit UI
34
  st.title("PDF Question-Answer Chatbot")
35
 
36
+ uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
37
  if uploaded_file is not None:
38
  text = load_pdf(uploaded_file)
39
  st.write("PDF loaded successfully. You can now ask questions.")