Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,46 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
4 |
-
import torch
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
text = ""
|
14 |
-
pdf_reader = PdfReader(file)
|
15 |
-
for page in pdf_reader.pages:
|
16 |
-
text += page.extract_text()
|
17 |
return text
|
18 |
|
19 |
-
#
|
20 |
-
def
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
outputs = model.generate(input_ids=input_ids, context_input_ids=context_ids)
|
33 |
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
34 |
return answer[0]
|
35 |
|
36 |
-
# Streamlit
|
37 |
-
st.title("PDF Question-
|
38 |
-
|
39 |
-
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
40 |
|
|
|
41 |
if uploaded_file is not None:
|
42 |
-
|
43 |
-
|
44 |
-
st.success("PDF file processed successfully.")
|
45 |
-
|
46 |
-
# Text area for user input
|
47 |
-
question = st.text_input("Ask a question about the PDF content:")
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
st.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
st.run()
|
|
|
1 |
+
!pip install streamlit transformers PyPDF2 faiss-cpu
|
2 |
import streamlit as st
|
3 |
+
import PyPDF2 # Now PyPDF2 should be found
|
4 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
|
|
5 |
|
6 |
+
# Load PDF and extract text
|
7 |
+
def load_pdf(file):
|
8 |
+
with open(file, "rb") as f:
|
9 |
+
reader = PyPDF2.PdfReader(f)
|
10 |
+
text = ""
|
11 |
+
for page in reader.pages:
|
12 |
+
text += page.extract_text() + "\n"
|
|
|
|
|
|
|
|
|
13 |
return text
|
14 |
|
15 |
+
# Initialize RAG model
|
16 |
+
def initialize_rag_model():
|
17 |
+
# Load the tokenizer and model
|
18 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
19 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="legacy", use_dummy_dataset=True)
|
20 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")
|
21 |
+
return tokenizer, retriever, model
|
22 |
+
|
23 |
+
# Process user query
|
24 |
+
def generate_answer(query, context, tokenizer, retriever, model):
|
25 |
+
inputs = tokenizer(query, return_tensors="pt")
|
26 |
+
inputs["context_input_ids"] = retriever(context, return_tensors="pt")["input_ids"]
|
27 |
+
outputs = model.generate(**inputs)
|
|
|
28 |
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
29 |
return answer[0]
|
30 |
|
31 |
+
# Streamlit UI
|
32 |
+
st.title("PDF Question-Answer Chatbot")
|
|
|
|
|
33 |
|
34 |
+
uploaded_file = st.file_uploader("/content/Rag Comprehensive notes with example.pdf", type=["pdf"])
|
35 |
if uploaded_file is not None:
|
36 |
+
text = load_pdf(uploaded_file)
|
37 |
+
st.write("PDF loaded successfully. You can now ask questions.")
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Initialize the RAG model
|
40 |
+
tokenizer, retriever, model = initialize_rag_model()
|
41 |
+
|
42 |
+
while True:
|
43 |
+
user_query = st.text_input("Ask a question about the PDF:")
|
44 |
+
if user_query:
|
45 |
+
answer = generate_answer(user_query, text, tokenizer, retriever, model)
|
46 |
+
st.write(f"Answer: {answer}")
|
|