newsarticle / app.py
tanya17's picture
Update app.py
6e94638 verified
import os
import streamlit as st
import pickle
import time
from langchain import OpenAI
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
openai_api_key = os.getenv('/content/openkey.env') # Correct the key name to match the environment variable
# Set OpenAI API key
os.environ['OPENAI_API_KEY'] = '/content/openkey.env'
st.title("RockyBot: News Research Tool 📈")
st.sidebar.title("News Article URLs")
urls = []
for i in range(3):
url = st.sidebar.text_input(f"URL {i+1}")
urls.append(url)
process_url_clicked = st.sidebar.button("Process URLs")
file_path = "faiss_store_openai.pkl"
main_placeholder = st.empty()
llm = OpenAI(temperature=0.9, max_tokens=500)
if process_url_clicked:
# Load data
loader = UnstructuredURLLoader(urls=urls)
main_placeholder.text("Data Loading...Started...✅✅✅")
data = loader.load()
# Split data
text_splitter = RecursiveCharacterTextSplitter(
separators=['\n\n', '\n', '.', ','],
chunk_size=1000
)
main_placeholder.text("Text Splitter...Started...✅✅✅")
docs = text_splitter.split_documents(data)
# Debugging: Print the number of documents
print("Number of Documents:", len(docs))
if docs:
# Create embeddings and save to FAISS index
embeddings = OpenAIEmbeddings()
# Generate embeddings for the documents
doc_texts = [doc.text for doc in docs]
embeddings = embeddings.embed(doc_texts)
# Debugging: Print the number of embeddings
print("Number of Embeddings:", len(embeddings))
if embeddings:
vectorstore_openai = FAISS.from_documents(docs, embeddings)
main_placeholder.text("Embedding Vector Started Building...✅✅✅")
time.sleep(2)
# Save the FAISS index to a pickle file
with open(file_path, "wb") as f:
pickle.dump(vectorstore_openai, f)
else:
main_placeholder.text("Embedding creation failed. No embeddings found.")
else:
main_placeholder.text("Document splitting failed. No documents found.")
query = main_placeholder.text_input("Question: ")
if query:
if os.path.exists(file_path):
with open(file_path, "rb") as f:
vectorstore = pickle.load(f)
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
result = chain({"question": query}, return_only_outputs=True)
# Display the answer
st.header("Answer")
st.write(result["answer"])
# Display sources, if available
sources = result.get("sources", "")
if sources:
st.subheader("Sources:")
sources_list = sources.split("\n")
for source in sources_list:
st.write(source)