tanya17 commited on
Commit
8550192
·
verified ·
1 Parent(s): 44c6689

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -105
app.py DELETED
@@ -1,105 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """movie recommendation system.ipynb
3
-
4
- Automatically generated by Colab.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1iy9ZFUvOu-sz4vP4--9-dr-T-8LMZNOP
8
- """
9
-
10
- import numpy as np
11
- import pandas as pd
12
- import difflib
13
- from sklearn.feature_extraction.text import TfidfVectorizer
14
- from sklearn.metrics.pairwise import cosine_similarity
15
-
16
- movies_df = pd.read_csv('/content/movies.csv')
17
-
18
- movies_df.head()
19
-
20
- movies_df.shape
21
-
22
- selected_features = ['genres', 'keywords', 'tagline', 'cast','director']
23
-
24
- print(selected_features)
25
-
26
- for feature in selected_features:
27
- movies_df[feature]=movies_df[feature].fillna('')
28
-
29
- combined_features = movies_df['genres']+' '+movies_df['keywords']+' '+movies_df['tagline']+' '+movies_df['cast']+' '+movies_df['director']
30
-
31
- print(combined_features)
32
-
33
- vectorizer = TfidfVectorizer()
34
-
35
- feature_vectors = vectorizer.fit_transform(combined_features)
36
-
37
- print(feature_vectors)
38
-
39
- similarity = cosine_similarity(feature_vectors)
40
-
41
- print(similarity)
42
-
43
- print(similarity.shape)
44
-
45
- movie_name = input(' Enter name of the movie: ')
46
-
47
- list_of_all_titles = movies_df['title'].tolist()
48
- new_var = print(list_of_all_titles)
49
-
50
- find_close_match = difflib.get_close_matches(movie_name, list_of_all_titles)
51
- print(find_close_match)
52
-
53
- close_match = find_close_match[0]
54
- print(close_match)
55
-
56
- index_of_the_movie = movies_df[movies_df.title == close_match]['index'].values[0]
57
- print(index_of_the_movie)
58
-
59
- similarity_score = list(enumerate(similarity[index_of_the_movie]))
60
- print(similarity_score)
61
-
62
- len(similarity_score)
63
-
64
- sorted_similar_movies = sorted(similarity_score, key = lambda x:x[1], reverse = True)
65
- print(sorted_similar_movies)
66
-
67
- print('suggesting movies for you : \n')
68
-
69
- i = 1
70
-
71
- for movie in sorted_similar_movies:
72
- index = movie[0]
73
- title_from_index = movies_df[movies_df.index==index]['title'].values[0]
74
- if (i<30):
75
- print(i, '.',title_from_index)
76
- i+=1
77
-
78
- """movie recommendation system
79
-
80
- """
81
-
82
- movie_name = input(' which is your favourite movie : ')
83
-
84
- list_of_all_titles = movies_df['title'].tolist()
85
-
86
- find_close_match = difflib.get_close_matches(movie_name, list_of_all_titles)
87
-
88
- close_match = find_close_match[0]
89
-
90
- index_of_the_movie = movies_df[movies_df.title == close_match]['index'].values[0]
91
-
92
- similarity_score = list(enumerate(similarity[index_of_the_movie]))
93
-
94
- sorted_similar_movies = sorted(similarity_score, key = lambda x:x[1], reverse = True)
95
-
96
- print('suggesting movies for you : \n')
97
-
98
- i = 1
99
-
100
- for movie in sorted_similar_movies:
101
- index = movie[0]
102
- title_from_index = movies_df[movies_df.index==index]['title'].values[0]
103
- if (i<30):
104
- print(i, '.',title_from_index)
105
- i+=1