Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -124,7 +124,7 @@ def predict_lifecycle(Category, ProductName, Price, Rating, NumReviews, StockQua
124
  return f"Error: {str(e)}"
125
 
126
  # Load dataset for dynamic pricing
127
- df_pricing = pd.read_csv("dynamic_pricing_data.csv") # Update this path with the correct one
128
 
129
  # Encode categorical variables for dynamic pricing
130
  label_encoders = {}
@@ -176,7 +176,7 @@ def predict_price(product_name, category, base_price, competitor_price, demand,
176
  return f"Optimal Price: ₹{round(predicted_price, 2)}"
177
 
178
  # Load dataset for product recommendation
179
- df_recommendation = pd.read_csv("synthetic_product_data.csv") # Update this path with the correct one
180
 
181
  # Preprocessing for product recommendation
182
  categorical_features_recommendation = ['product_condition', 'category']
@@ -207,7 +207,7 @@ def recommend_products(category):
207
 
208
  # Circular Economy Analytics Dashboard
209
  def load_data():
210
- return pd.read_csv("marketplace_data.csv")
211
 
212
  def update_live_data():
213
  df = load_data()
@@ -218,7 +218,7 @@ def update_live_data():
218
  "NumReviews": np.random.randint(0, 1000)
219
  }
220
  df = df.append(new_entry, ignore_index=True)
221
- df.to_csv("marketplace_data.csv", index=False)
222
 
223
  def generate_dashboard():
224
  df = load_data()
@@ -331,4 +331,6 @@ def live_update():
331
  threading.Thread(target=live_update, daemon=True).start()
332
 
333
  # Launch the app
334
- app.launch()
 
 
 
124
  return f"Error: {str(e)}"
125
 
126
  # Load dataset for dynamic pricing
127
+ df_pricing = pd.read_csv("/content/dynamic_pricing_data_5000.csv") # Update this path with the correct one
128
 
129
  # Encode categorical variables for dynamic pricing
130
  label_encoders = {}
 
176
  return f"Optimal Price: ₹{round(predicted_price, 2)}"
177
 
178
  # Load dataset for product recommendation
179
+ df_recommendation = pd.read_csv("/content/synthetic_product_data_5000.csv") # Update this path with the correct one
180
 
181
  # Preprocessing for product recommendation
182
  categorical_features_recommendation = ['product_condition', 'category']
 
207
 
208
  # Circular Economy Analytics Dashboard
209
  def load_data():
210
+ return pd.read_csv("/content/synthetic_marketplace_data_2000.csv")
211
 
212
  def update_live_data():
213
  df = load_data()
 
218
  "NumReviews": np.random.randint(0, 1000)
219
  }
220
  df = df.append(new_entry, ignore_index=True)
221
+ df.to_csv("/content/synthetic_marketplace_data_2000.csv", index=False)
222
 
223
  def generate_dashboard():
224
  df = load_data()
 
331
  threading.Thread(target=live_update, daemon=True).start()
332
 
333
  # Launch the app
334
+ app.launch()
335
+
336
+