Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,11 +15,15 @@ import random
|
|
15 |
import requests
|
16 |
import os
|
17 |
|
18 |
-
from transformers import
|
19 |
|
20 |
-
# Load
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# File to store feedback
|
25 |
FEEDBACK_FILE = "user_feedback.csv"
|
@@ -29,6 +33,10 @@ def huggingface_chatbot(user_input):
|
|
29 |
result = generator(user_input, max_length=150, temperature=0.7, do_sample=True)
|
30 |
if isinstance(result, list) and "generated_text" in result[0]:
|
31 |
return result[0]["generated_text"]
|
|
|
|
|
|
|
|
|
32 |
else:
|
33 |
return "⚠️ Could not parse model response."
|
34 |
except Exception as e:
|
@@ -36,6 +44,7 @@ def huggingface_chatbot(user_input):
|
|
36 |
|
37 |
|
38 |
|
|
|
39 |
# Database setup for user authentication
|
40 |
def init_db():
|
41 |
conn = sqlite3.connect("users.db")
|
|
|
15 |
import requests
|
16 |
import os
|
17 |
|
18 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
19 |
|
20 |
+
# Load tokenizer and model for Flan-T5
|
21 |
+
model_name = "google/flan-t5-base"
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
23 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
24 |
+
|
25 |
+
# Create a pipeline
|
26 |
+
generator = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
27 |
|
28 |
# File to store feedback
|
29 |
FEEDBACK_FILE = "user_feedback.csv"
|
|
|
33 |
result = generator(user_input, max_length=150, temperature=0.7, do_sample=True)
|
34 |
if isinstance(result, list) and "generated_text" in result[0]:
|
35 |
return result[0]["generated_text"]
|
36 |
+
elif "generated_text" in result:
|
37 |
+
return result["generated_text"]
|
38 |
+
elif "text" in result[0]:
|
39 |
+
return result[0]["text"]
|
40 |
else:
|
41 |
return "⚠️ Could not parse model response."
|
42 |
except Exception as e:
|
|
|
44 |
|
45 |
|
46 |
|
47 |
+
|
48 |
# Database setup for user authentication
|
49 |
def init_db():
|
50 |
conn = sqlite3.connect("users.db")
|