tanya17 commited on
Commit
988badf
·
verified ·
1 Parent(s): 1c1414d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -26
app.py CHANGED
@@ -15,46 +15,27 @@ import random
15
  import requests
16
  import os
17
 
18
- HUGGINGFACE_API_URL = "https://api-inference.huggingface.co/models/gpt2"
19
 
20
-
21
-
22
- HUGGINGFACE_API_KEY = os.environ.get("HUGGINGFACE_API_KEY" , "")
23
 
24
  # File to store feedback
25
  FEEDBACK_FILE = "user_feedback.csv"
26
 
27
  def huggingface_chatbot(user_input):
28
- if not HUGGINGFACE_API_KEY:
29
- return "Error: Hugging Face API key not configured."
30
  try:
31
- headers = {
32
- "Authorization": f"Bearer {HUGGINGFACE_API_KEY}", # note the space after 'Bearer'
33
- "Content-Type": "application/json"
34
- }
35
- data = {
36
- "inputs": user_input,
37
- "parameters": {
38
- "max_new_tokens": 150,
39
- "temperature": 0.7,
40
- "return_full_text": False
41
- }
42
- }
43
- response = requests.post(HUGGINGFACE_API_URL, headers=headers, json=data)
44
- response.raise_for_status()
45
- result = response.json()
46
  if isinstance(result, list) and "generated_text" in result[0]:
47
  return result[0]["generated_text"]
48
- elif "generated_text" in result:
49
- return result["generated_text"]
50
- elif "text" in result[0]:
51
- return result[0]["text"]
52
  else:
53
- return "⚠️ Could not parse response from LLaMA model."
54
  except Exception as e:
55
  return f"Error: {str(e)}"
56
 
57
 
 
58
  # Database setup for user authentication
59
  def init_db():
60
  conn = sqlite3.connect("users.db")
 
15
  import requests
16
  import os
17
 
18
+ from transformers import pipeline, set_seed
19
 
20
+ # Load a text generation model locally
21
+ generator = pipeline('text-generation', model='gpt2')
22
+ set_seed(42)
23
 
24
  # File to store feedback
25
  FEEDBACK_FILE = "user_feedback.csv"
26
 
27
  def huggingface_chatbot(user_input):
 
 
28
  try:
29
+ result = generator(user_input, max_length=150, temperature=0.7, do_sample=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  if isinstance(result, list) and "generated_text" in result[0]:
31
  return result[0]["generated_text"]
 
 
 
 
32
  else:
33
+ return "⚠️ Could not parse model response."
34
  except Exception as e:
35
  return f"Error: {str(e)}"
36
 
37
 
38
+
39
  # Database setup for user authentication
40
  def init_db():
41
  conn = sqlite3.connect("users.db")