File size: 7,741 Bytes
a9106b7
 
 
 
 
 
 
 
 
 
b7bc525
a9106b7
 
 
41cc794
931ea15
 
5ed473c
b57680f
5ed473c
f910bef
931ea15
f910bef
 
a9106b7
 
5ed473c
 
 
a3f1767
fecb2b3
a3f1767
5ed473c
b7bc525
b2b7f7a
 
 
5c20eaf
b2b7f7a
5c20eaf
b2b7f7a
 
124c297
5ed473c
 
 
 
 
 
 
b2b7f7a
931ea15
a9106b7
 
 
 
 
 
 
 
 
5ed473c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b7f7a
 
a3f1767
b2b7f7a
 
 
 
ce4dc04
b2b7f7a
 
 
 
 
 
 
 
 
 
 
 
 
a9106b7
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4dc04
a9106b7
 
ce4dc04
a9106b7
 
 
 
 
 
ce4dc04
a9106b7
 
 
 
 
 
ce4dc04
a9106b7
 
 
 
 
 
ce4dc04
a9106b7
 
 
 
124c297
 
 
a9106b7
1d67a76
a9106b7
 
 
 
5ed473c
a9106b7
 
 
1d67a76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import (
    AutoModelForCausalLM,
    BitsAndBytesConfig,
    AutoTokenizer,
    TextIteratorStreamer,
)

GENERATION_TIME=180

DESCRIPTION = f"""\
# ORLM LLaMA-3-8B

Hello! I'm ORLM-LLaMA-3-8B, here to automate your optimization modeling tasks! Check our [repo](https://github.com/Cardinal-Operations/ORLM) and [paper](https://arxiv.org/abs/2405.17743)!

Please note that solution generation may be terminated if it exceeds {GENERATION_TIME} seconds. We strongly recommend running the demo locally using our [sample script](https://github.com/Cardinal-Operations/ORLM/blob/master/scripts/inference.py) for a smoother experience.

If the demo successfully generates a code solution, execute it in your Python environment with `coptpy` installed to obtain the final optimal value for your task.
"""

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "1024"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "CardinalOperations/ORLM-LLaMA-3-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    quantization_config=BitsAndBytesConfig(load_in_8bit=True),
)
model.config.sliding_window = 4096
model.eval()

PROMPT_TEMPLATE = r"""
Below is an operations research question. Build a mathematical model and corresponding python code using `coptpy` that appropriately addresses the question.

# Question:
{Question}

# Response:
"""

@spaces.GPU(duration=GENERATION_TIME)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    # conversation = []
    # for user, assistant in chat_history:
    #     conversation.extend(
    #         [
    #             {"role": "user", "content": user},
    #             {"role": "assistant", "content": assistant},
    #         ]
    #     )
    # conversation.append({"role": "user", "content": message})

    # input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    # if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
    #     input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
    #     gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    # input_ids = input_ids.to(model.device)

    prompt = PROMPT_TEMPLATE.replace("{Question}", message).strip()
    tokenized_example = tokenizer(prompt, return_tensors='pt', max_length=MAX_INPUT_TOKEN_LENGTH, truncation=True)
    input_ids = tokenized_example.input_ids
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0.0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.0,
            maximum=4.0,
            step=0.1,
            value=0.0,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.95,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=20,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.0,
        ),
    ],
    stop_btn=None,
    examples=[
        [r"A lab has 1000 units of medicinal ingredients to make two pills, a large pill and a small pill. A large pill requires 3 units of medicinal ingredients and 2 units of filler. A small pill requires 2 units of medicinal ingredients and 1 unit of filler. The lab has to make at least 100 large pills. However, since small pills are more popular at least 60% of the total number of pills must be small. How many of each should be made to minimize the total number of filler material needed?"],
        [r"Let's say you're on a mission to create the perfect meal plan for yourself. You're focused on getting the right balance of nutrients without digging too deep into your pockets. You have six different food options to consider: Chicken, Oats, Tofu, Rice, Beef, and Salmon. Each of these foods provides a certain amount of protein, carbohydrates, and calories, and they all come with their own distinct prices.\n\nHere's a detailed breakdown of the nutritional content and cost of each food item:\n\n- Chicken: Delivers 14 grams of protein, a single gram of carbohydrates, and 164 calories at a cost of $6.\n- Oats: Gives you 11 grams of protein, 6 grams of carbohydrates, and 210 calories for just $2.\n- Tofu: Offers 8 grams of protein, 12 grams of carbohydrates, and 98 calories at a cost of $9.\n- Rice: Provides 1 gram of protein, a generous 17 grams of carbohydrates, and 92 calories for $3.\n- Beef: Comes packed with 16 grams of protein, 11 grams of carbohydrates, and 211 calories, priced at $7.\n- Salmon: Brings a hefty 19 grams of protein, 13 grams of carbohydrates, and 211 calories but costs $9.\n\nYou want to make sure your meal plan meets the following nutritional targets: at least 70 grams of protein, 117 grams of carbohydrates, and 1837 calories. Considering these six foods, what is the least amount of money you need to spend to meet these dietary needs?\nRemember, your response should only contain the optimal value of the cost to meet the requirements."], 
        [r"Haus Toys can manufacture and sell toy trucks, toy planes, toy boats, and toy trains. The profit from selling one truck is $5, from one plane is $10, from one boat is $8, and from one train is $7. How many types of toys should Haus Toys manufacture to maximize profit?\n\nThere are 890 units of wood available. Manufacturing one truck requires 12 units of wood, one plane requires 20 units of wood, one boat requires 15 units of wood, and one train requires 10 units of wood.\n\nThere are 500 units of steel available. Manufacturing one plane requires 3 units of steel, one boat requires 5 units of steel, one train requires 4 units of steel, and one truck requires 6 units of steel.\n\nIf Haus Toys manufactures trucks, then they will not manufacture trains.\n\nHowever, if they manufacture boats, they will also manufacture planes.\n\nThe number of toy boats manufactured cannot exceed the number of toy trains manufactured."], 
    ],
    cache_examples=False
)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()