Spaces:
Sleeping
Sleeping
from PIL import Image | |
import requests | |
import torch | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
import gradio as gr | |
from models.blip import blip_decoder | |
image_size = 384 | |
transform = transforms.Compose([ | |
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
]) | |
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' | |
model = blip_decoder(pretrained=model_url, image_size=384, vit='large') | |
model.eval() | |
model = model.to(device) | |
def inference_image_caption(raw_image): | |
image = transform(raw_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5) | |
return caption[0] | |
inputs = gr.Image(type='pil', label="Input") | |
outputs = gr.outputs.Textbox(label="Output") | |
title = "BLIP" | |
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation" | |
app = gr.Interface(inference_image_caption, inputs, outputs, title=title, description=description, examples=[['starrynight.jpeg',]]) | |
app.launch(enable_queue=True, share=True) |