Spaces:
Running
on
Zero
Running
on
Zero
Merge branch 'inference_streaming' into flow_tensorrt
Browse files- README.md +30 -0
- cosyvoice/cli/cosyvoice.py +0 -1
- cosyvoice/cli/model.py +2 -3
- cosyvoice/flow/flow.py +6 -0
- cosyvoice/flow/flow_matching.py +2 -2
- cosyvoice/transformer/encoder.py +1 -1
- examples/magicdata-read/cosyvoice/conf/cosyvoice.fromscratch.yaml +198 -0
- examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml +198 -0
- examples/magicdata-read/cosyvoice/conf/ds_stage2.json +42 -0
- examples/magicdata-read/cosyvoice/cosyvoice +1 -0
- examples/magicdata-read/cosyvoice/local/download_and_untar.sh +97 -0
- examples/magicdata-read/cosyvoice/local/prepare_data.py +50 -0
- examples/magicdata-read/cosyvoice/path.sh +3 -0
- examples/magicdata-read/cosyvoice/run.sh +105 -0
- examples/magicdata-read/cosyvoice/tools +1 -0
- examples/magicdata-read/cosyvoice/tts_text.json +18 -0
README.md
CHANGED
@@ -4,6 +4,36 @@
|
|
4 |
|
5 |
For `SenseVoice`, visit [SenseVoice repo](https://github.com/FunAudioLLM/SenseVoice) and [SenseVoice space](https://www.modelscope.cn/studios/iic/SenseVoice).
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
## Install
|
8 |
|
9 |
**Clone and install**
|
|
|
4 |
|
5 |
For `SenseVoice`, visit [SenseVoice repo](https://github.com/FunAudioLLM/SenseVoice) and [SenseVoice space](https://www.modelscope.cn/studios/iic/SenseVoice).
|
6 |
|
7 |
+
## Roadmap
|
8 |
+
|
9 |
+
- [x] 2024/07
|
10 |
+
|
11 |
+
- [x] Flow matching training support
|
12 |
+
- [x] WeTextProcessing support when ttsfrd is not avaliable
|
13 |
+
- [x] Fastapi server and client
|
14 |
+
|
15 |
+
- [ ] 2024/08
|
16 |
+
|
17 |
+
- [ ] Repetition Aware Sampling(RAS) inference for llm stability
|
18 |
+
- [ ] Streaming inference mode support, including kv cache and sdpa for rtf optimization
|
19 |
+
|
20 |
+
- [ ] 2024/09
|
21 |
+
|
22 |
+
- [ ] 50hz llm model which supports 10 language
|
23 |
+
|
24 |
+
- [ ] 2024/10
|
25 |
+
|
26 |
+
- [ ] 50hz llama based llm model which supports lora finetune
|
27 |
+
|
28 |
+
- [ ] TBD
|
29 |
+
|
30 |
+
- [ ] Support more instruction mode
|
31 |
+
- [ ] Voice conversion
|
32 |
+
- [ ] Music generation
|
33 |
+
- [ ] Training script sample based on Mandarin
|
34 |
+
- [ ] CosyVoice-500M trained with more multi-lingual data
|
35 |
+
- [ ] More...
|
36 |
+
|
37 |
## Install
|
38 |
|
39 |
**Clone and install**
|
cosyvoice/cli/cosyvoice.py
CHANGED
@@ -43,7 +43,6 @@ class CosyVoice:
|
|
43 |
if load_jit:
|
44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
45 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
46 |
-
|
47 |
if load_trt:
|
48 |
self.model.load_trt(model_dir, use_fp16)
|
49 |
|
|
|
43 |
if load_jit:
|
44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
45 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
|
|
46 |
if load_trt:
|
47 |
self.model.load_trt(model_dir, use_fp16)
|
48 |
|
cosyvoice/cli/model.py
CHANGED
@@ -137,7 +137,6 @@ class CosyVoiceModel:
|
|
137 |
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None
|
138 |
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
139 |
p.start()
|
140 |
-
p.join()
|
141 |
if stream is True:
|
142 |
token_hop_len = self.token_min_hop_len
|
143 |
while True:
|
@@ -158,7 +157,7 @@ class CosyVoiceModel:
|
|
158 |
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
159 |
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
160 |
break
|
161 |
-
|
162 |
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
163 |
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
164 |
with self.flow_hift_context:
|
@@ -171,7 +170,7 @@ class CosyVoiceModel:
|
|
171 |
yield {'tts_speech': this_tts_speech.cpu()}
|
172 |
else:
|
173 |
# deal with all tokens
|
174 |
-
|
175 |
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
176 |
with self.flow_hift_context:
|
177 |
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
137 |
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None
|
138 |
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
139 |
p.start()
|
|
|
140 |
if stream is True:
|
141 |
token_hop_len = self.token_min_hop_len
|
142 |
while True:
|
|
|
157 |
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
158 |
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
159 |
break
|
160 |
+
p.join()
|
161 |
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
162 |
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
163 |
with self.flow_hift_context:
|
|
|
170 |
yield {'tts_speech': this_tts_speech.cpu()}
|
171 |
else:
|
172 |
# deal with all tokens
|
173 |
+
p.join()
|
174 |
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
175 |
with self.flow_hift_context:
|
176 |
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
cosyvoice/flow/flow.py
CHANGED
@@ -12,6 +12,7 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
import logging
|
|
|
15 |
from typing import Dict, Optional
|
16 |
import torch
|
17 |
import torch.nn as nn
|
@@ -77,6 +78,11 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
77 |
|
78 |
# get conditions
|
79 |
conds = torch.zeros(feat.shape, device=token.device)
|
|
|
|
|
|
|
|
|
|
|
80 |
conds = conds.transpose(1, 2)
|
81 |
|
82 |
mask = (~make_pad_mask(feat_len)).to(h)
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
import logging
|
15 |
+
import random
|
16 |
from typing import Dict, Optional
|
17 |
import torch
|
18 |
import torch.nn as nn
|
|
|
78 |
|
79 |
# get conditions
|
80 |
conds = torch.zeros(feat.shape, device=token.device)
|
81 |
+
for i, j in enumerate(feat_len):
|
82 |
+
if random.random() < 0.5:
|
83 |
+
continue
|
84 |
+
index = random.randint(0, int(0.3 * j))
|
85 |
+
conds[i, :index] = feat[i, :index]
|
86 |
conds = conds.transpose(1, 2)
|
87 |
|
88 |
mask = (~make_pad_mask(feat_len)).to(h)
|
cosyvoice/flow/flow_matching.py
CHANGED
@@ -78,10 +78,10 @@ class ConditionalCFM(BASECFM):
|
|
78 |
sol = []
|
79 |
|
80 |
for step in range(1, len(t_span)):
|
81 |
-
dphi_dt = self.
|
82 |
# Classifier-Free Guidance inference introduced in VoiceBox
|
83 |
if self.inference_cfg_rate > 0:
|
84 |
-
cfg_dphi_dt = self.
|
85 |
x, mask,
|
86 |
torch.zeros_like(mu), t,
|
87 |
torch.zeros_like(spks) if spks is not None else None,
|
|
|
78 |
sol = []
|
79 |
|
80 |
for step in range(1, len(t_span)):
|
81 |
+
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
82 |
# Classifier-Free Guidance inference introduced in VoiceBox
|
83 |
if self.inference_cfg_rate > 0:
|
84 |
+
cfg_dphi_dt = self.estimator(
|
85 |
x, mask,
|
86 |
torch.zeros_like(mu), t,
|
87 |
torch.zeros_like(spks) if spks is not None else None,
|
cosyvoice/transformer/encoder.py
CHANGED
@@ -299,7 +299,7 @@ class BaseEncoder(torch.nn.Module):
|
|
299 |
rate.
|
300 |
3. Currently, nn.Sequential is used to stack all the convolution
|
301 |
layers in subsampling, we need to rewrite it to make it work
|
302 |
-
with cache, which is not
|
303 |
Args:
|
304 |
xs (torch.Tensor): (1, max_len, dim)
|
305 |
chunk_size (int): decoding chunk size
|
|
|
299 |
rate.
|
300 |
3. Currently, nn.Sequential is used to stack all the convolution
|
301 |
layers in subsampling, we need to rewrite it to make it work
|
302 |
+
with cache, which is not preferred.
|
303 |
Args:
|
304 |
xs (torch.Tensor): (1, max_len, dim)
|
305 |
chunk_size (int): decoding chunk size
|
examples/magicdata-read/cosyvoice/conf/cosyvoice.fromscratch.yaml
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set random seed, so that you may reproduce your result.
|
2 |
+
__set_seed1: !apply:random.seed [1986]
|
3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
6 |
+
|
7 |
+
# fixed params
|
8 |
+
sample_rate: 22050
|
9 |
+
text_encoder_input_size: 512
|
10 |
+
llm_input_size: 1024
|
11 |
+
llm_output_size: 1024
|
12 |
+
spk_embed_dim: 192
|
13 |
+
|
14 |
+
# model params
|
15 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
16 |
+
# for system/third_party class/function, we do not require this.
|
17 |
+
llm: !new:cosyvoice.llm.llm.TransformerLM
|
18 |
+
text_encoder_input_size: !ref <text_encoder_input_size>
|
19 |
+
llm_input_size: !ref <llm_input_size>
|
20 |
+
llm_output_size: !ref <llm_output_size>
|
21 |
+
text_token_size: 51866
|
22 |
+
speech_token_size: 4096
|
23 |
+
length_normalized_loss: True
|
24 |
+
lsm_weight: 0
|
25 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
26 |
+
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
27 |
+
input_size: !ref <text_encoder_input_size>
|
28 |
+
output_size: 1024
|
29 |
+
attention_heads: 8
|
30 |
+
linear_units: 2048
|
31 |
+
num_blocks: 3
|
32 |
+
dropout_rate: 0.1
|
33 |
+
positional_dropout_rate: 0.1
|
34 |
+
attention_dropout_rate: 0.0
|
35 |
+
normalize_before: True
|
36 |
+
input_layer: 'linear'
|
37 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
38 |
+
selfattention_layer_type: 'rel_selfattn'
|
39 |
+
use_cnn_module: False
|
40 |
+
macaron_style: False
|
41 |
+
use_dynamic_chunk: False
|
42 |
+
use_dynamic_left_chunk: False
|
43 |
+
static_chunk_size: 1
|
44 |
+
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
45 |
+
input_size: !ref <llm_input_size>
|
46 |
+
output_size: !ref <llm_output_size>
|
47 |
+
attention_heads: 8
|
48 |
+
linear_units: 2048
|
49 |
+
num_blocks: 7
|
50 |
+
dropout_rate: 0.1
|
51 |
+
positional_dropout_rate: 0.1
|
52 |
+
attention_dropout_rate: 0.0
|
53 |
+
input_layer: 'linear_legacy'
|
54 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
55 |
+
selfattention_layer_type: 'rel_selfattn'
|
56 |
+
static_chunk_size: 1
|
57 |
+
|
58 |
+
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
59 |
+
input_size: 512
|
60 |
+
output_size: 80
|
61 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
62 |
+
output_type: 'mel'
|
63 |
+
vocab_size: 4096
|
64 |
+
input_frame_rate: 50
|
65 |
+
only_mask_loss: True
|
66 |
+
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
67 |
+
output_size: 512
|
68 |
+
attention_heads: 4
|
69 |
+
linear_units: 1024
|
70 |
+
num_blocks: 3
|
71 |
+
dropout_rate: 0.1
|
72 |
+
positional_dropout_rate: 0.1
|
73 |
+
attention_dropout_rate: 0.1
|
74 |
+
normalize_before: True
|
75 |
+
input_layer: 'linear'
|
76 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
77 |
+
selfattention_layer_type: 'rel_selfattn'
|
78 |
+
input_size: 512
|
79 |
+
use_cnn_module: False
|
80 |
+
macaron_style: False
|
81 |
+
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
82 |
+
channels: 80
|
83 |
+
sampling_ratios: [1, 1, 1, 1]
|
84 |
+
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
85 |
+
in_channels: 240
|
86 |
+
n_spks: 1
|
87 |
+
spk_emb_dim: 80
|
88 |
+
cfm_params: !new:omegaconf.DictConfig
|
89 |
+
content:
|
90 |
+
sigma_min: 1e-06
|
91 |
+
solver: 'euler'
|
92 |
+
t_scheduler: 'cosine'
|
93 |
+
training_cfg_rate: 0.2
|
94 |
+
inference_cfg_rate: 0.7
|
95 |
+
reg_loss_type: 'l1'
|
96 |
+
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
97 |
+
in_channels: 320
|
98 |
+
out_channels: 80
|
99 |
+
channels: [256, 256]
|
100 |
+
dropout: 0.0
|
101 |
+
attention_head_dim: 64
|
102 |
+
n_blocks: 4
|
103 |
+
num_mid_blocks: 8
|
104 |
+
num_heads: 8
|
105 |
+
act_fn: 'gelu'
|
106 |
+
|
107 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
108 |
+
in_channels: 80
|
109 |
+
base_channels: 512
|
110 |
+
nb_harmonics: 8
|
111 |
+
sampling_rate: !ref <sample_rate>
|
112 |
+
nsf_alpha: 0.1
|
113 |
+
nsf_sigma: 0.003
|
114 |
+
nsf_voiced_threshold: 10
|
115 |
+
upsample_rates: [8, 8]
|
116 |
+
upsample_kernel_sizes: [16, 16]
|
117 |
+
istft_params:
|
118 |
+
n_fft: 16
|
119 |
+
hop_len: 4
|
120 |
+
resblock_kernel_sizes: [3, 7, 11]
|
121 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
122 |
+
source_resblock_kernel_sizes: [7, 11]
|
123 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
124 |
+
lrelu_slope: 0.1
|
125 |
+
audio_limit: 0.99
|
126 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
127 |
+
num_class: 1
|
128 |
+
in_channels: 80
|
129 |
+
cond_channels: 512
|
130 |
+
|
131 |
+
# processor functions
|
132 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
133 |
+
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
134 |
+
multilingual: True
|
135 |
+
num_languages: 100
|
136 |
+
language: 'en'
|
137 |
+
task: 'transcribe'
|
138 |
+
allowed_special: 'all'
|
139 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
140 |
+
get_tokenizer: !ref <get_tokenizer>
|
141 |
+
allowed_special: !ref <allowed_special>
|
142 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
143 |
+
max_length: 40960
|
144 |
+
min_length: 0
|
145 |
+
token_max_length: 200
|
146 |
+
token_min_length: 1
|
147 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
148 |
+
resample_rate: !ref <sample_rate>
|
149 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
150 |
+
n_fft: 1024
|
151 |
+
num_mels: 80
|
152 |
+
sampling_rate: !ref <sample_rate>
|
153 |
+
hop_size: 256
|
154 |
+
win_size: 1024
|
155 |
+
fmin: 0
|
156 |
+
fmax: 8000
|
157 |
+
center: False
|
158 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
159 |
+
feat_extractor: !ref <feat_extractor>
|
160 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
161 |
+
normalize: True
|
162 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
163 |
+
shuffle_size: 1000
|
164 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
165 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
166 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
167 |
+
batch_type: 'dynamic'
|
168 |
+
max_frames_in_batch: 12000
|
169 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
170 |
+
use_spk_embedding: False # change to True during sft
|
171 |
+
|
172 |
+
# dataset processor pipeline
|
173 |
+
data_pipeline: [
|
174 |
+
!ref <parquet_opener>,
|
175 |
+
!ref <tokenize>,
|
176 |
+
!ref <filter>,
|
177 |
+
!ref <resample>,
|
178 |
+
!ref <compute_fbank>,
|
179 |
+
!ref <parse_embedding>,
|
180 |
+
!ref <shuffle>,
|
181 |
+
!ref <sort>,
|
182 |
+
!ref <batch>,
|
183 |
+
!ref <padding>,
|
184 |
+
]
|
185 |
+
|
186 |
+
# train conf
|
187 |
+
train_conf:
|
188 |
+
optim: adam
|
189 |
+
optim_conf:
|
190 |
+
lr: 0.002 # change to 0.001 if you want to train flow from scratch
|
191 |
+
scheduler: warmuplr
|
192 |
+
scheduler_conf:
|
193 |
+
warmup_steps: 25000
|
194 |
+
max_epoch: 200
|
195 |
+
grad_clip: 5
|
196 |
+
accum_grad: 2
|
197 |
+
log_interval: 100
|
198 |
+
save_per_step: -1
|
examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set random seed, so that you may reproduce your result.
|
2 |
+
__set_seed1: !apply:random.seed [1986]
|
3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
6 |
+
|
7 |
+
# fixed params
|
8 |
+
sample_rate: 22050
|
9 |
+
text_encoder_input_size: 512
|
10 |
+
llm_input_size: 1024
|
11 |
+
llm_output_size: 1024
|
12 |
+
spk_embed_dim: 192
|
13 |
+
|
14 |
+
# model params
|
15 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
16 |
+
# for system/third_party class/function, we do not require this.
|
17 |
+
llm: !new:cosyvoice.llm.llm.TransformerLM
|
18 |
+
text_encoder_input_size: !ref <text_encoder_input_size>
|
19 |
+
llm_input_size: !ref <llm_input_size>
|
20 |
+
llm_output_size: !ref <llm_output_size>
|
21 |
+
text_token_size: 51866
|
22 |
+
speech_token_size: 4096
|
23 |
+
length_normalized_loss: True
|
24 |
+
lsm_weight: 0
|
25 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
26 |
+
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
27 |
+
input_size: !ref <text_encoder_input_size>
|
28 |
+
output_size: 1024
|
29 |
+
attention_heads: 16
|
30 |
+
linear_units: 4096
|
31 |
+
num_blocks: 6
|
32 |
+
dropout_rate: 0.1
|
33 |
+
positional_dropout_rate: 0.1
|
34 |
+
attention_dropout_rate: 0.0
|
35 |
+
normalize_before: True
|
36 |
+
input_layer: 'linear'
|
37 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
38 |
+
selfattention_layer_type: 'rel_selfattn'
|
39 |
+
use_cnn_module: False
|
40 |
+
macaron_style: False
|
41 |
+
use_dynamic_chunk: False
|
42 |
+
use_dynamic_left_chunk: False
|
43 |
+
static_chunk_size: 1
|
44 |
+
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
45 |
+
input_size: !ref <llm_input_size>
|
46 |
+
output_size: !ref <llm_output_size>
|
47 |
+
attention_heads: 16
|
48 |
+
linear_units: 4096
|
49 |
+
num_blocks: 14
|
50 |
+
dropout_rate: 0.1
|
51 |
+
positional_dropout_rate: 0.1
|
52 |
+
attention_dropout_rate: 0.0
|
53 |
+
input_layer: 'linear_legacy'
|
54 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
55 |
+
selfattention_layer_type: 'rel_selfattn'
|
56 |
+
static_chunk_size: 1
|
57 |
+
|
58 |
+
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
59 |
+
input_size: 512
|
60 |
+
output_size: 80
|
61 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
62 |
+
output_type: 'mel'
|
63 |
+
vocab_size: 4096
|
64 |
+
input_frame_rate: 50
|
65 |
+
only_mask_loss: True
|
66 |
+
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
67 |
+
output_size: 512
|
68 |
+
attention_heads: 8
|
69 |
+
linear_units: 2048
|
70 |
+
num_blocks: 6
|
71 |
+
dropout_rate: 0.1
|
72 |
+
positional_dropout_rate: 0.1
|
73 |
+
attention_dropout_rate: 0.1
|
74 |
+
normalize_before: True
|
75 |
+
input_layer: 'linear'
|
76 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
77 |
+
selfattention_layer_type: 'rel_selfattn'
|
78 |
+
input_size: 512
|
79 |
+
use_cnn_module: False
|
80 |
+
macaron_style: False
|
81 |
+
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
82 |
+
channels: 80
|
83 |
+
sampling_ratios: [1, 1, 1, 1]
|
84 |
+
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
85 |
+
in_channels: 240
|
86 |
+
n_spks: 1
|
87 |
+
spk_emb_dim: 80
|
88 |
+
cfm_params: !new:omegaconf.DictConfig
|
89 |
+
content:
|
90 |
+
sigma_min: 1e-06
|
91 |
+
solver: 'euler'
|
92 |
+
t_scheduler: 'cosine'
|
93 |
+
training_cfg_rate: 0.2
|
94 |
+
inference_cfg_rate: 0.7
|
95 |
+
reg_loss_type: 'l1'
|
96 |
+
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
97 |
+
in_channels: 320
|
98 |
+
out_channels: 80
|
99 |
+
channels: [256, 256]
|
100 |
+
dropout: 0.0
|
101 |
+
attention_head_dim: 64
|
102 |
+
n_blocks: 4
|
103 |
+
num_mid_blocks: 12
|
104 |
+
num_heads: 8
|
105 |
+
act_fn: 'gelu'
|
106 |
+
|
107 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
108 |
+
in_channels: 80
|
109 |
+
base_channels: 512
|
110 |
+
nb_harmonics: 8
|
111 |
+
sampling_rate: !ref <sample_rate>
|
112 |
+
nsf_alpha: 0.1
|
113 |
+
nsf_sigma: 0.003
|
114 |
+
nsf_voiced_threshold: 10
|
115 |
+
upsample_rates: [8, 8]
|
116 |
+
upsample_kernel_sizes: [16, 16]
|
117 |
+
istft_params:
|
118 |
+
n_fft: 16
|
119 |
+
hop_len: 4
|
120 |
+
resblock_kernel_sizes: [3, 7, 11]
|
121 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
122 |
+
source_resblock_kernel_sizes: [7, 11]
|
123 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
124 |
+
lrelu_slope: 0.1
|
125 |
+
audio_limit: 0.99
|
126 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
127 |
+
num_class: 1
|
128 |
+
in_channels: 80
|
129 |
+
cond_channels: 512
|
130 |
+
|
131 |
+
# processor functions
|
132 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
133 |
+
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
134 |
+
multilingual: True
|
135 |
+
num_languages: 100
|
136 |
+
language: 'en'
|
137 |
+
task: 'transcribe'
|
138 |
+
allowed_special: 'all'
|
139 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
140 |
+
get_tokenizer: !ref <get_tokenizer>
|
141 |
+
allowed_special: !ref <allowed_special>
|
142 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
143 |
+
max_length: 40960
|
144 |
+
min_length: 0
|
145 |
+
token_max_length: 200
|
146 |
+
token_min_length: 1
|
147 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
148 |
+
resample_rate: !ref <sample_rate>
|
149 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
150 |
+
n_fft: 1024
|
151 |
+
num_mels: 80
|
152 |
+
sampling_rate: !ref <sample_rate>
|
153 |
+
hop_size: 256
|
154 |
+
win_size: 1024
|
155 |
+
fmin: 0
|
156 |
+
fmax: 8000
|
157 |
+
center: False
|
158 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
159 |
+
feat_extractor: !ref <feat_extractor>
|
160 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
161 |
+
normalize: True
|
162 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
163 |
+
shuffle_size: 1000
|
164 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
165 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
166 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
167 |
+
batch_type: 'dynamic'
|
168 |
+
max_frames_in_batch: 2000
|
169 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
170 |
+
use_spk_embedding: False # change to True during sft
|
171 |
+
|
172 |
+
# dataset processor pipeline
|
173 |
+
data_pipeline: [
|
174 |
+
!ref <parquet_opener>,
|
175 |
+
!ref <tokenize>,
|
176 |
+
!ref <filter>,
|
177 |
+
!ref <resample>,
|
178 |
+
!ref <compute_fbank>,
|
179 |
+
!ref <parse_embedding>,
|
180 |
+
!ref <shuffle>,
|
181 |
+
!ref <sort>,
|
182 |
+
!ref <batch>,
|
183 |
+
!ref <padding>,
|
184 |
+
]
|
185 |
+
|
186 |
+
# train conf
|
187 |
+
train_conf:
|
188 |
+
optim: adam
|
189 |
+
optim_conf:
|
190 |
+
lr: 0.001 # change to 1e-5 during sft
|
191 |
+
scheduler: warmuplr # change to constantlr during sft
|
192 |
+
scheduler_conf:
|
193 |
+
warmup_steps: 2500
|
194 |
+
max_epoch: 200
|
195 |
+
grad_clip: 5
|
196 |
+
accum_grad: 2
|
197 |
+
log_interval: 100
|
198 |
+
save_per_step: -1
|
examples/magicdata-read/cosyvoice/conf/ds_stage2.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train_micro_batch_size_per_gpu": 1,
|
3 |
+
"gradient_accumulation_steps": 1,
|
4 |
+
"steps_per_print": 100,
|
5 |
+
"gradient_clipping": 5,
|
6 |
+
"fp16": {
|
7 |
+
"enabled": false,
|
8 |
+
"auto_cast": false,
|
9 |
+
"loss_scale": 0,
|
10 |
+
"initial_scale_power": 16,
|
11 |
+
"loss_scale_window": 256,
|
12 |
+
"hysteresis": 2,
|
13 |
+
"consecutive_hysteresis": false,
|
14 |
+
"min_loss_scale": 1
|
15 |
+
},
|
16 |
+
"bf16": {
|
17 |
+
"enabled": false
|
18 |
+
},
|
19 |
+
"zero_force_ds_cpu_optimizer": false,
|
20 |
+
"zero_optimization": {
|
21 |
+
"stage": 2,
|
22 |
+
"offload_optimizer": {
|
23 |
+
"device": "none",
|
24 |
+
"pin_memory": true
|
25 |
+
},
|
26 |
+
"allgather_partitions": true,
|
27 |
+
"allgather_bucket_size": 5e8,
|
28 |
+
"overlap_comm": false,
|
29 |
+
"reduce_scatter": true,
|
30 |
+
"reduce_bucket_size": 5e8,
|
31 |
+
"contiguous_gradients" : true
|
32 |
+
},
|
33 |
+
"optimizer": {
|
34 |
+
"type": "AdamW",
|
35 |
+
"params": {
|
36 |
+
"lr": 0.001,
|
37 |
+
"weight_decay": 0.0001,
|
38 |
+
"torch_adam": true,
|
39 |
+
"adam_w_mode": true
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|
examples/magicdata-read/cosyvoice/cosyvoice
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../../cosyvoice
|
examples/magicdata-read/cosyvoice/local/download_and_untar.sh
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Copyright 2014 Johns Hopkins University (author: Daniel Povey)
|
4 |
+
# Apache 2.0
|
5 |
+
|
6 |
+
remove_archive=false
|
7 |
+
|
8 |
+
if [ "$1" == --remove-archive ]; then
|
9 |
+
remove_archive=true
|
10 |
+
shift
|
11 |
+
fi
|
12 |
+
|
13 |
+
if [ $# -ne 3 ]; then
|
14 |
+
echo "Usage: $0 [--remove-archive] <data-base> <url-base> <corpus-part>"
|
15 |
+
echo "e.g.: $0 /export/a15/vpanayotov/data www.openslr.org/resources/11 dev-clean"
|
16 |
+
echo "With --remove-archive it will remove the archive after successfully un-tarring it."
|
17 |
+
echo "<corpus-part> can be one of: dev-clean, test-clean, dev-other, test-other,"
|
18 |
+
echo " train-clean-100, train-clean-360, train-other-500."
|
19 |
+
exit 1
|
20 |
+
fi
|
21 |
+
|
22 |
+
data=$1
|
23 |
+
url=$2
|
24 |
+
part=$3
|
25 |
+
|
26 |
+
if [ ! -d "$data" ]; then
|
27 |
+
echo "$0: no such directory $data"
|
28 |
+
exit 1
|
29 |
+
fi
|
30 |
+
|
31 |
+
part_ok=false
|
32 |
+
list="dev_set test_set train_set"
|
33 |
+
for x in $list; do
|
34 |
+
if [ "$part" == $x ]; then part_ok=true; fi
|
35 |
+
done
|
36 |
+
if ! $part_ok; then
|
37 |
+
echo "$0: expected <corpus-part> to be one of $list, but got '$part'"
|
38 |
+
exit 1
|
39 |
+
fi
|
40 |
+
|
41 |
+
if [ -z "$url" ]; then
|
42 |
+
echo "$0: empty URL base."
|
43 |
+
exit 1
|
44 |
+
fi
|
45 |
+
|
46 |
+
if [ -f $data/.$part.complete ]; then
|
47 |
+
echo "$0: data part $part was already successfully extracted, nothing to do."
|
48 |
+
exit 0
|
49 |
+
fi
|
50 |
+
|
51 |
+
|
52 |
+
# sizes of the archive files in bytes. This is some older versions.
|
53 |
+
sizes_old="1035537823 2201936013 52627842921"
|
54 |
+
# sizes_new is the archive file sizes of the final release. Some of these sizes are of
|
55 |
+
# things we probably won't download.
|
56 |
+
sizes_new="3886385"
|
57 |
+
|
58 |
+
if [ -f $data/$part.tar.gz ]; then
|
59 |
+
size=$(/bin/ls -l $data/$part.tar.gz | awk '{print $5}')
|
60 |
+
size_ok=false
|
61 |
+
for s in $sizes_old $sizes_new; do if [ $s == $size ]; then size_ok=true; fi; done
|
62 |
+
if ! $size_ok; then
|
63 |
+
echo "$0: removing existing file $data/$part.tar.gz because its size in bytes $size"
|
64 |
+
echo "does not equal the size of one of the archives."
|
65 |
+
rm $data/$part.tar.gz
|
66 |
+
else
|
67 |
+
echo "$data/$part.tar.gz exists and appears to be complete."
|
68 |
+
fi
|
69 |
+
fi
|
70 |
+
|
71 |
+
if [ ! -f $data/$part.tar.gz ]; then
|
72 |
+
if ! which wget >/dev/null; then
|
73 |
+
echo "$0: wget is not installed."
|
74 |
+
exit 1
|
75 |
+
fi
|
76 |
+
full_url=$url/$part.tar.gz
|
77 |
+
echo "$0: downloading data from $full_url. This may take some time, please be patient."
|
78 |
+
|
79 |
+
if ! wget -P $data --no-check-certificate $full_url; then
|
80 |
+
echo "$0: error executing wget $full_url"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
fi
|
84 |
+
|
85 |
+
if ! tar -C $data -xvzf $data/$part.tar.gz; then
|
86 |
+
echo "$0: error un-tarring archive $data/$part.tar.gz"
|
87 |
+
exit 1
|
88 |
+
fi
|
89 |
+
|
90 |
+
touch $data/.$part.complete
|
91 |
+
|
92 |
+
echo "$0: Successfully downloaded and un-tarred $data/$part.tar.gz"
|
93 |
+
|
94 |
+
if $remove_archive; then
|
95 |
+
echo "$0: removing $data/$part.tar.gz file since --remove-archive option was supplied."
|
96 |
+
rm $data/$part.tar.gz
|
97 |
+
fi
|
examples/magicdata-read/cosyvoice/local/prepare_data.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.getLogger()
|
8 |
+
|
9 |
+
def main():
|
10 |
+
utt2wav, utt2text, utt2spk, spk2utt = {}, {}, {}, {}
|
11 |
+
with open(os.path.join(args.src_dir, "TRANS.txt"), "r") as f:
|
12 |
+
lines = f.readlines()[1:]
|
13 |
+
lines = [l.split('\t') for l in lines]
|
14 |
+
for wav, spk, content in tqdm(lines):
|
15 |
+
wav, spk, content = wav.strip(), spk.strip(), content.strip()
|
16 |
+
content = content.replace('[FIL]', '')
|
17 |
+
content = content.replace('[SPK]', '')
|
18 |
+
wav = os.path.join(args.src_dir, spk, wav)
|
19 |
+
if not os.path.exists(wav):
|
20 |
+
continue
|
21 |
+
utt = os.path.basename(wav).replace('.wav', '')
|
22 |
+
utt2wav[utt] = wav
|
23 |
+
utt2text[utt] = content
|
24 |
+
utt2spk[utt] = spk
|
25 |
+
if spk not in spk2utt:
|
26 |
+
spk2utt[spk] = []
|
27 |
+
spk2utt[spk].append(utt)
|
28 |
+
|
29 |
+
with open('{}/wav.scp'.format(args.des_dir), 'w') as f:
|
30 |
+
for k, v in utt2wav.items():
|
31 |
+
f.write('{} {}\n'.format(k, v))
|
32 |
+
with open('{}/text'.format(args.des_dir), 'w') as f:
|
33 |
+
for k, v in utt2text.items():
|
34 |
+
f.write('{} {}\n'.format(k, v))
|
35 |
+
with open('{}/utt2spk'.format(args.des_dir), 'w') as f:
|
36 |
+
for k, v in utt2spk.items():
|
37 |
+
f.write('{} {}\n'.format(k, v))
|
38 |
+
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
|
39 |
+
for k, v in spk2utt.items():
|
40 |
+
f.write('{} {}\n'.format(k, ' '.join(v)))
|
41 |
+
return
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
parser.add_argument('--src_dir',
|
46 |
+
type=str)
|
47 |
+
parser.add_argument('--des_dir',
|
48 |
+
type=str)
|
49 |
+
args = parser.parse_args()
|
50 |
+
main()
|
examples/magicdata-read/cosyvoice/path.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
2 |
+
export PYTHONIOENCODING=UTF-8
|
3 |
+
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
examples/magicdata-read/cosyvoice/run.sh
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
3 |
+
. ./path.sh || exit 1;
|
4 |
+
|
5 |
+
stage=-1
|
6 |
+
stop_stage=3
|
7 |
+
|
8 |
+
data_url=www.openslr.org/resources/68
|
9 |
+
data_dir=/mnt/hengwu.zty/data/tts/openslr/magicdata-read
|
10 |
+
pretrained_model_dir=../../../pretrained_models/CosyVoice-300M
|
11 |
+
|
12 |
+
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
13 |
+
echo "Data Download"
|
14 |
+
for part in dev_set test_set train_set; do
|
15 |
+
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
16 |
+
done
|
17 |
+
fi
|
18 |
+
|
19 |
+
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
20 |
+
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
21 |
+
for x in dev test train; do
|
22 |
+
mkdir -p data/$x
|
23 |
+
python local/prepare_data.py --src_dir $data_dir/$x --des_dir data/$x
|
24 |
+
done
|
25 |
+
fi
|
26 |
+
|
27 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
28 |
+
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
29 |
+
for x in dev test train; do
|
30 |
+
tools/extract_embedding.py --dir data/$x \
|
31 |
+
--onnx_path $pretrained_model_dir/campplus.onnx
|
32 |
+
done
|
33 |
+
fi
|
34 |
+
|
35 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
36 |
+
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
37 |
+
for x in dev test train; do
|
38 |
+
tools/extract_speech_token.py --dir data/$x \
|
39 |
+
--onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
|
40 |
+
done
|
41 |
+
fi
|
42 |
+
|
43 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
44 |
+
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
45 |
+
for x in dev test train; do
|
46 |
+
mkdir -p data/$x/parquet
|
47 |
+
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
48 |
+
--num_processes 10 \
|
49 |
+
--src_dir data/$x \
|
50 |
+
--des_dir data/$x/parquet
|
51 |
+
done
|
52 |
+
fi
|
53 |
+
|
54 |
+
# inference
|
55 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
56 |
+
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
57 |
+
for mode in sft zero_shot; do
|
58 |
+
python cosyvoice/bin/inference.py --mode $mode \
|
59 |
+
--gpu 0 \
|
60 |
+
--config conf/cosyvoice.yaml \
|
61 |
+
--prompt_data data/test/parquet/data.list \
|
62 |
+
--prompt_utt2data data/test/parquet/utt2data.list \
|
63 |
+
--tts_text `pwd`/tts_text.json \
|
64 |
+
--llm_model $pretrained_model_dir/llm.pt \
|
65 |
+
--flow_model $pretrained_model_dir/flow.pt \
|
66 |
+
--hifigan_model $pretrained_model_dir/hift.pt \
|
67 |
+
--result_dir `pwd`/exp/cosyvoice/test/$mode
|
68 |
+
done
|
69 |
+
fi
|
70 |
+
|
71 |
+
# train llm
|
72 |
+
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
73 |
+
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
74 |
+
job_id=1986
|
75 |
+
dist_backend="nccl"
|
76 |
+
num_workers=2
|
77 |
+
prefetch=100
|
78 |
+
train_engine=torch_ddp
|
79 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
80 |
+
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
81 |
+
if [ $train_engine == 'deepspeed' ]; then
|
82 |
+
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
83 |
+
fi
|
84 |
+
cp data/train/parquet/data.list data/train.data.list
|
85 |
+
cp data/dev/parquet/data.list data/dev.data.list
|
86 |
+
for model in llm; do
|
87 |
+
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
88 |
+
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
89 |
+
cosyvoice/bin/train.py \
|
90 |
+
--train_engine $train_engine \
|
91 |
+
--config conf/cosyvoice.yaml \
|
92 |
+
--train_data data/train.data.list \
|
93 |
+
--cv_data data/dev.data.list \
|
94 |
+
--model $model \
|
95 |
+
--checkpoint $pretrained_model_dir/$model.pt \
|
96 |
+
--model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
|
97 |
+
--tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
|
98 |
+
--ddp.dist_backend $dist_backend \
|
99 |
+
--num_workers ${num_workers} \
|
100 |
+
--prefetch ${prefetch} \
|
101 |
+
--pin_memory \
|
102 |
+
--deepspeed_config ./conf/ds_stage2.json \
|
103 |
+
--deepspeed.save_states model+optimizer
|
104 |
+
done
|
105 |
+
fi
|
examples/magicdata-read/cosyvoice/tools
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../../tools
|
examples/magicdata-read/cosyvoice/tts_text.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"38_5718_20170915093303": [
|
3 |
+
"我想这出最好歌曲把歌词发到网上请别人帮我作曲急急",
|
4 |
+
"叫他明天早上差五分儿九点去机场"
|
5 |
+
],
|
6 |
+
"38_5721_20170915091235": [
|
7 |
+
"变温室调到零下两度档",
|
8 |
+
"交谈中请勿轻信汇款信息陌生电话请勿使用外挂软件"
|
9 |
+
],
|
10 |
+
"38_5733_20170915130323": [
|
11 |
+
"这是老鹰乐队的一首经典歌曲",
|
12 |
+
"我急用这段音乐我自己找到一段但是有现场杂音"
|
13 |
+
],
|
14 |
+
"38_5836_20170916221414": [
|
15 |
+
"给我播一个陶喆的专辑",
|
16 |
+
"这套餐好贵呀我发这么多短信贵死了"
|
17 |
+
]
|
18 |
+
}
|