tanbw commited on
Commit
c4011c4
1 Parent(s): 65fb48a

no message

Browse files
Files changed (4) hide show
  1. deploy.py +2 -2
  2. deploy.sh +18 -8
  3. requirements.txt → requirements_.txt +0 -0
  4. webui.py +1 -1
deploy.py CHANGED
@@ -24,7 +24,7 @@ def run_shell_script(script_path):
24
  # 使用方法示例
25
  # 假设有一个名为example.sh的脚本文件在当前目录下
26
  run_shell_script('deploy.sh')
27
-
28
  class Args:
29
  def __init__(self):
30
  self.port = 5000
@@ -43,4 +43,4 @@ prompt_sr, target_sr = 16000, 22050
43
  default_data = np.zeros(target_sr)
44
 
45
  # 调用 main 时传递 args
46
- main(args)
 
24
  # 使用方法示例
25
  # 假设有一个名为example.sh的脚本文件在当前目录下
26
  run_shell_script('deploy.sh')
27
+
28
  class Args:
29
  def __init__(self):
30
  self.port = 5000
 
43
  default_data = np.zeros(target_sr)
44
 
45
  # 调用 main 时传递 args
46
+ main(args,sft_spk)
deploy.sh CHANGED
@@ -1,23 +1,33 @@
1
  #!/bin/bash
 
 
 
2
 
3
- cat /usr/local/cuda/version.txt
 
 
4
  # pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
5
- pip install pynini==2.1.5
6
- pip install -r requirements.txt
7
 
8
  # If you encounter sox compatibility issues
9
  # ubuntu
 
10
  apt-get install sox libsox-dev
11
 
12
  mkdir -p pretrained_models
13
- huggingface-cli download model-scope/CosyVoice-300M --local-dir pretrained_models/CosyVoice-300M --token=$hf_token
14
- huggingface-cli download model-scope/CosyVoice-300M-SFT --local-dir pretrained_models/CosyVoice-300M-SFT --token=$hf_token
 
 
 
 
 
15
  #huggingface-cli download FunAudioLLM/CosyVoice-ttsfrd --local-dir pretrained_models/CosyVoice-ttsfrd --token=$hf_token
16
 
17
  ls pretrained_models
18
 
19
- #cd pretrained_models/CosyVoice-ttsfrd/
20
- #unzip resource.zip -d .
21
- #pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
22
 
23
  export PYTHONPATH=third_party/Matcha-TTS
 
1
  #!/bin/bash
2
+ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
3
+ sh Miniconda3-latest-Linux-x86_64.sh -b
4
+ source ~/miniconda3/bin/activate
5
 
6
+ conda create -n cosyvoice python=3.8
7
+ conda activate cosyvoice
8
+ conda install -y -c conda-forge pynini==2.1.5
9
  # pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
10
+ pip install -r requirements_.txt
 
11
 
12
  # If you encounter sox compatibility issues
13
  # ubuntu
14
+ apt-get -y update
15
  apt-get install sox libsox-dev
16
 
17
  mkdir -p pretrained_models
18
+ git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
19
+ #git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
20
+ #git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
21
+ #git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
22
+ git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
23
+ #huggingface-cli download model-scope/CosyVoice-300M --local-dir pretrained_models/CosyVoice-300M --token=$hf_token
24
+ #huggingface-cli download model-scope/CosyVoice-300M-SFT --local-dir pretrained_models/CosyVoice-300M-SFT --token=$hf_token
25
  #huggingface-cli download FunAudioLLM/CosyVoice-ttsfrd --local-dir pretrained_models/CosyVoice-ttsfrd --token=$hf_token
26
 
27
  ls pretrained_models
28
 
29
+ cd pretrained_models/CosyVoice-ttsfrd/
30
+ unzip resource.zip -d .
31
+ pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
32
 
33
  export PYTHONPATH=third_party/Matcha-TTS
requirements.txt → requirements_.txt RENAMED
File without changes
webui.py CHANGED
@@ -132,7 +132,7 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
132
  yield (target_sr, i['tts_speech'].numpy().flatten())
133
 
134
 
135
- def main(args):
136
  with gr.Blocks() as demo:
137
  gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
138
  预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
 
132
  yield (target_sr, i['tts_speech'].numpy().flatten())
133
 
134
 
135
+ def main(args,sft_spk):
136
  with gr.Blocks() as demo:
137
  gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
138
  预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \