Spaces:
Running
on
Zero
Running
on
Zero
zhoubofan.zbf
commited on
Commit
•
53a3c1b
1
Parent(s):
5f21aef
update
Browse files- cosyvoice/bin/export_trt.py +17 -9
- cosyvoice/cli/cosyvoice.py +4 -1
- cosyvoice/flow/flow.py +1 -1
- cosyvoice/flow/flow_matching.py +36 -0
cosyvoice/bin/export_trt.py
CHANGED
@@ -38,23 +38,21 @@ def main():
|
|
38 |
args = get_args()
|
39 |
|
40 |
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
41 |
-
|
42 |
-
flow = cosyvoice.model.flow
|
43 |
estimator = cosyvoice.model.flow.decoder.estimator
|
44 |
|
45 |
dtype = torch.float32 if not args.export_half else torch.float16
|
46 |
device = torch.device("cuda")
|
47 |
batch_size = 1
|
48 |
-
seq_len =
|
49 |
-
hidden_size = flow.output_size
|
50 |
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
51 |
-
mask = torch.
|
52 |
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
53 |
-
t = torch.
|
54 |
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
55 |
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
56 |
|
57 |
-
onnx_file_name = '
|
58 |
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
59 |
dummy_input = (x, mask, mu, t, spks, cond)
|
60 |
|
@@ -90,14 +88,24 @@ def main():
|
|
90 |
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
91 |
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
92 |
|
93 |
-
trt_file_name = '
|
94 |
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
95 |
|
96 |
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
97 |
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
98 |
-
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose"
|
|
|
|
|
|
|
99 |
|
100 |
os.system(trtexec_cmd)
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
if __name__ == "__main__":
|
103 |
main()
|
|
|
38 |
args = get_args()
|
39 |
|
40 |
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
|
|
|
|
41 |
estimator = cosyvoice.model.flow.decoder.estimator
|
42 |
|
43 |
dtype = torch.float32 if not args.export_half else torch.float16
|
44 |
device = torch.device("cuda")
|
45 |
batch_size = 1
|
46 |
+
seq_len = 256
|
47 |
+
hidden_size = cosyvoice.model.flow.output_size
|
48 |
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
49 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
50 |
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
51 |
+
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
52 |
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
53 |
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
54 |
|
55 |
+
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
56 |
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
57 |
dummy_input = (x, mask, mu, t, spks, cond)
|
58 |
|
|
|
88 |
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
89 |
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
90 |
|
91 |
+
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
92 |
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
93 |
|
94 |
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
95 |
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
96 |
+
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
97 |
+
("--fp16" if args.export_half else "")
|
98 |
+
# /ossfs/workspace/TensorRT-10.2.0.19/bin/trtexec --onnx=estimator_fp32.onnx --saveEngine=estimator_fp32.plan --minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 --maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose
|
99 |
+
print("execute ", trtexec_cmd)
|
100 |
|
101 |
os.system(trtexec_cmd)
|
102 |
|
103 |
+
print("x.shape", x.shape)
|
104 |
+
print("mask.shape", mask.shape)
|
105 |
+
print("mu.shape", mu.shape)
|
106 |
+
print("t.shape", t.shape)
|
107 |
+
print("spks.shape", spks.shape)
|
108 |
+
print("cond.shape", cond.shape)
|
109 |
+
|
110 |
if __name__ == "__main__":
|
111 |
main()
|
cosyvoice/cli/cosyvoice.py
CHANGED
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
-
def __init__(self, model_dir, load_jit=True, load_trt=
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
@@ -39,11 +39,14 @@ class CosyVoice:
|
|
39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
40 |
'{}/flow.pt'.format(model_dir),
|
41 |
'{}/hift.pt'.format(model_dir))
|
|
|
42 |
if load_jit:
|
43 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
44 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
|
|
45 |
if load_trt:
|
46 |
self.model.load_trt(model_dir, use_fp16)
|
|
|
47 |
del configs
|
48 |
|
49 |
def list_avaliable_spks(self):
|
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
+
def __init__(self, model_dir, load_jit=True, load_trt=False, use_fp16=False):
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
|
|
39 |
self.model.load('{}/llm.pt'.format(model_dir),
|
40 |
'{}/flow.pt'.format(model_dir),
|
41 |
'{}/hift.pt'.format(model_dir))
|
42 |
+
load_jit = False
|
43 |
if load_jit:
|
44 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
45 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
46 |
+
|
47 |
if load_trt:
|
48 |
self.model.load_trt(model_dir, use_fp16)
|
49 |
+
|
50 |
del configs
|
51 |
|
52 |
def list_avaliable_spks(self):
|
cosyvoice/flow/flow.py
CHANGED
@@ -107,7 +107,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
107 |
# concat text and prompt_text
|
108 |
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
109 |
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
110 |
-
mask = (~make_pad_mask(token_len)).
|
111 |
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
112 |
|
113 |
# text encode
|
|
|
107 |
# concat text and prompt_text
|
108 |
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
109 |
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
110 |
+
mask = (~make_pad_mask(token_len)).to(embedding.dtype).unsqueeze(-1).to(embedding)
|
111 |
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
112 |
|
113 |
# text encode
|
cosyvoice/flow/flow_matching.py
CHANGED
@@ -32,6 +32,7 @@ class ConditionalCFM(BASECFM):
|
|
32 |
|
33 |
self.estimator_context = None
|
34 |
self.estimator_engine = None
|
|
|
35 |
|
36 |
@torch.inference_mode()
|
37 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
@@ -123,6 +124,41 @@ class ConditionalCFM(BASECFM):
|
|
123 |
self.estimator_context.execute_async_v3(stream_handle=handle)
|
124 |
return ret
|
125 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
127 |
|
128 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
|
|
32 |
|
33 |
self.estimator_context = None
|
34 |
self.estimator_engine = None
|
35 |
+
self.is_saved = None
|
36 |
|
37 |
@torch.inference_mode()
|
38 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
|
124 |
self.estimator_context.execute_async_v3(stream_handle=handle)
|
125 |
return ret
|
126 |
else:
|
127 |
+
|
128 |
+
if self.is_saved == None:
|
129 |
+
self.is_saved = True
|
130 |
+
output = self.estimator.forward(x, mask, mu, t, spks, cond)
|
131 |
+
torch.save(x, "x.pt")
|
132 |
+
torch.save(mask, "mask.pt")
|
133 |
+
torch.save(mu, "mu.pt")
|
134 |
+
torch.save(t, "t.pt")
|
135 |
+
torch.save(spks, "spks.pt")
|
136 |
+
torch.save(cond, "cond.pt")
|
137 |
+
torch.save(output, "output.pt")
|
138 |
+
dummy_input = (x, mask, mu, t, spks, cond)
|
139 |
+
torch.onnx.export(
|
140 |
+
self.estimator,
|
141 |
+
dummy_input,
|
142 |
+
"estimator_fp32.onnx",
|
143 |
+
export_params=True,
|
144 |
+
opset_version=17,
|
145 |
+
do_constant_folding=True,
|
146 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
147 |
+
output_names=['output'],
|
148 |
+
dynamic_axes={
|
149 |
+
'x': {2: 'seq_len'},
|
150 |
+
'mask': {2: 'seq_len'},
|
151 |
+
'mu': {2: 'seq_len'},
|
152 |
+
'cond': {2: 'seq_len'},
|
153 |
+
'output': {2: 'seq_len'},
|
154 |
+
}
|
155 |
+
)
|
156 |
+
# print("x, x.shape", x, x.shape)
|
157 |
+
# print("mask, mask.shape", mask, mask.shape)
|
158 |
+
# print("mu, mu.shape", mu, mu.shape)
|
159 |
+
# print("t, t.shape", t, t.shape)
|
160 |
+
# print("spks, spks.shape", spks, spks.shape)
|
161 |
+
# print("cond, cond.shape", cond, cond.shape)
|
162 |
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
163 |
|
164 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|