Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Alibaba Inc. All Rights Reserved. | |
. ./path.sh || exit 1; | |
stage=-1 | |
stop_stage=3 | |
data_url=www.openslr.org/resources/68 | |
data_dir=/mnt/hengwu.zty/data/tts/openslr/magicdata-read | |
pretrained_model_dir=../../../pretrained_models/CosyVoice-300M | |
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then | |
echo "Data Download" | |
for part in dev_set test_set train_set; do | |
local/download_and_untar.sh ${data_dir} ${data_url} ${part} | |
done | |
fi | |
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then | |
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt" | |
for x in dev test train; do | |
mkdir -p data/$x | |
python local/prepare_data.py --src_dir $data_dir/$x --des_dir data/$x | |
done | |
fi | |
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then | |
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir" | |
for x in dev test train; do | |
tools/extract_embedding.py --dir data/$x \ | |
--onnx_path $pretrained_model_dir/campplus.onnx | |
done | |
fi | |
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then | |
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir" | |
for x in dev test train; do | |
tools/extract_speech_token.py --dir data/$x \ | |
--onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx | |
done | |
fi | |
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then | |
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt" | |
for x in dev test train; do | |
mkdir -p data/$x/parquet | |
tools/make_parquet_list.py --num_utts_per_parquet 1000 \ | |
--num_processes 10 \ | |
--src_dir data/$x \ | |
--des_dir data/$x/parquet | |
done | |
fi | |
# inference | |
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then | |
echo "Run inference. Please make sure utt in tts_text is in prompt_data" | |
for mode in sft zero_shot; do | |
python cosyvoice/bin/inference.py --mode $mode \ | |
--gpu 0 \ | |
--config conf/cosyvoice.yaml \ | |
--prompt_data data/test/parquet/data.list \ | |
--prompt_utt2data data/test/parquet/utt2data.list \ | |
--tts_text `pwd`/tts_text.json \ | |
--llm_model $pretrained_model_dir/llm.pt \ | |
--flow_model $pretrained_model_dir/flow.pt \ | |
--hifigan_model $pretrained_model_dir/hift.pt \ | |
--result_dir `pwd`/exp/cosyvoice/test/$mode | |
done | |
fi | |
# train llm | |
export CUDA_VISIBLE_DEVICES="0,1,2,3" | |
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') | |
job_id=1986 | |
dist_backend="nccl" | |
num_workers=2 | |
prefetch=100 | |
train_engine=torch_ddp | |
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then | |
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml" | |
if [ $train_engine == 'deepspeed' ]; then | |
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary" | |
fi | |
cp data/train/parquet/data.list data/train.data.list | |
cp data/dev/parquet/data.list data/dev.data.list | |
for model in llm flow; do | |
torchrun --nnodes=1 --nproc_per_node=$num_gpus \ | |
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \ | |
cosyvoice/bin/train.py \ | |
--train_engine $train_engine \ | |
--config conf/cosyvoice.yaml \ | |
--train_data data/train.data.list \ | |
--cv_data data/dev.data.list \ | |
--model $model \ | |
--checkpoint $pretrained_model_dir/$model.pt \ | |
--model_dir `pwd`/exp/cosyvoice/$model/$train_engine \ | |
--tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \ | |
--ddp.dist_backend $dist_backend \ | |
--num_workers ${num_workers} \ | |
--prefetch ${prefetch} \ | |
--pin_memory \ | |
--deepspeed_config ./conf/ds_stage2.json \ | |
--deepspeed.save_states model+optimizer | |
done | |
fi | |
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then | |
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir" | |
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir | |
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir | |
fi |