Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
import argparse | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
from fastapi import FastAPI, UploadFile, Form, File | |
from fastapi.responses import StreamingResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
import uvicorn | |
import numpy as np | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append('{}/../../..'.format(ROOT_DIR)) | |
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR)) | |
from cosyvoice.cli.cosyvoice import CosyVoice | |
from cosyvoice.utils.file_utils import load_wav | |
app = FastAPI() | |
# set cross region allowance | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"]) | |
def generate_data(model_output): | |
for i in model_output: | |
tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() | |
yield tts_audio | |
async def inference_sft(tts_text: str = Form(), spk_id: str = Form()): | |
model_output = cosyvoice.inference_sft(tts_text, spk_id) | |
return StreamingResponse(generate_data(model_output)) | |
async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()): | |
prompt_speech_16k = load_wav(prompt_wav.file, 16000) | |
model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k) | |
return StreamingResponse(generate_data(model_output)) | |
async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()): | |
prompt_speech_16k = load_wav(prompt_wav.file, 16000) | |
model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k) | |
return StreamingResponse(generate_data(model_output)) | |
async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()): | |
model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text) | |
return StreamingResponse(generate_data(model_output)) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--port', | |
type=int, | |
default=50000) | |
parser.add_argument('--model_dir', | |
type=str, | |
default='iic/CosyVoice-300M', | |
help='local path or modelscope repo id') | |
args = parser.parse_args() | |
cosyvoice = CosyVoice(args.model_dir) | |
uvicorn.run(app, host="127.0.0.1", port=args.port) | |