CosyVoice's picture
fix lint
90433f5
raw
history blame
3.2 kB
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import argparse
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
from fastapi import FastAPI, UploadFile, Form, File
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import numpy as np
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../../..'.format(ROOT_DIR))
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
app = FastAPI()
# set cross region allowance
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"])
def generate_data(model_output):
for i in model_output:
tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
yield tts_audio
@app.get("/inference_sft")
async def inference_sft(tts_text: str = Form(), spk_id: str = Form()):
model_output = cosyvoice.inference_sft(tts_text, spk_id)
return StreamingResponse(generate_data(model_output))
@app.get("/inference_zero_shot")
async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()):
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
return StreamingResponse(generate_data(model_output))
@app.get("/inference_cross_lingual")
async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()):
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
return StreamingResponse(generate_data(model_output))
@app.get("/inference_instruct")
async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()):
model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text)
return StreamingResponse(generate_data(model_output))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port',
type=int,
default=50000)
parser.add_argument('--model_dir',
type=str,
default='iic/CosyVoice-300M',
help='local path or modelscope repo id')
args = parser.parse_args()
cosyvoice = CosyVoice(args.model_dir)
uvicorn.run(app, host="127.0.0.1", port=args.port)