Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
from einops import pack, rearrange, repeat | |
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D | |
from matcha.models.components.transformer import BasicTransformerBlock | |
class ConditionalDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
channels=(256, 256), | |
dropout=0.05, | |
attention_head_dim=64, | |
n_blocks=1, | |
num_mid_blocks=2, | |
num_heads=4, | |
act_fn="snake", | |
): | |
""" | |
This decoder requires an input with the same shape of the target. So, if your text content | |
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. | |
""" | |
super().__init__() | |
channels = tuple(channels) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.time_embeddings = SinusoidalPosEmb(in_channels) | |
time_embed_dim = channels[0] * 4 | |
self.time_mlp = TimestepEmbedding( | |
in_channels=in_channels, | |
time_embed_dim=time_embed_dim, | |
act_fn="silu", | |
) | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
output_channel = in_channels | |
for i in range(len(channels)): # pylint: disable=consider-using-enumerate | |
input_channel = output_channel | |
output_channel = channels[i] | |
is_last = i == len(channels) - 1 | |
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
downsample = ( | |
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
) | |
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) | |
for i in range(num_mid_blocks): | |
input_channel = channels[-1] | |
out_channels = channels[-1] | |
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) | |
channels = channels[::-1] + (channels[0],) | |
for i in range(len(channels) - 1): | |
input_channel = channels[i] * 2 | |
output_channel = channels[i + 1] | |
is_last = i == len(channels) - 2 | |
resnet = ResnetBlock1D( | |
dim=input_channel, | |
dim_out=output_channel, | |
time_emb_dim=time_embed_dim, | |
) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
upsample = ( | |
Upsample1D(output_channel, use_conv_transpose=True) | |
if not is_last | |
else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
) | |
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) | |
self.final_block = Block1D(channels[-1], channels[-1]) | |
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) | |
self.initialize_weights() | |
def initialize_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv1d): | |
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.GroupNorm): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x, mask, mu, t, spks=None, cond=None): | |
"""Forward pass of the UNet1DConditional model. | |
Args: | |
x (torch.Tensor): shape (batch_size, in_channels, time) | |
mask (_type_): shape (batch_size, 1, time) | |
t (_type_): shape (batch_size) | |
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. | |
cond (_type_, optional): placeholder for future use. Defaults to None. | |
Raises: | |
ValueError: _description_ | |
ValueError: _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
t = self.time_embeddings(t) | |
t = self.time_mlp(t) | |
x = pack([x, mu], "b * t")[0] | |
if spks is not None: | |
spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) | |
x = pack([x, spks], "b * t")[0] | |
if cond is not None: | |
x = pack([x, cond], "b * t")[0] | |
hiddens = [] | |
masks = [mask] | |
for resnet, transformer_blocks, downsample in self.down_blocks: | |
mask_down = masks[-1] | |
x = resnet(x, mask_down, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
hiddens.append(x) # Save hidden states for skip connections | |
x = downsample(x * mask_down) | |
masks.append(mask_down[:, :, ::2]) | |
masks = masks[:-1] | |
mask_mid = masks[-1] | |
for resnet, transformer_blocks in self.mid_blocks: | |
x = resnet(x, mask_mid, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
for resnet, transformer_blocks, upsample in self.up_blocks: | |
mask_up = masks.pop() | |
skip = hiddens.pop() | |
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] | |
x = resnet(x, mask_up, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
x = upsample(x * mask_up) | |
x = self.final_block(x, mask_up) | |
output = self.final_proj(x * mask_up) | |
return output * mask | |