CosyVoice / examples /libritts /cosyvoice /conf /cosyvoice.fromscratch.yaml
CosyVoice's picture
add cosyvoice code
076829a
raw
history blame
6.34 kB
# set random seed, so that you may reproduce your result.
__set_seed1: !apply:random.seed [1986]
__set_seed2: !apply:numpy.random.seed [1986]
__set_seed3: !apply:torch.manual_seed [1986]
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
# fixed params
sample_rate: 22050
text_encoder_input_size: 512
llm_input_size: 1024
llm_output_size: 1024
spk_embed_dim: 192
# model params
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
# for system/third_party class/function, we do not require this.
llm: !new:cosyvoice.llm.llm.TransformerLM
text_encoder_input_size: !ref <text_encoder_input_size>
llm_input_size: !ref <llm_input_size>
llm_output_size: !ref <llm_output_size>
text_token_size: 51866
speech_token_size: 4096
length_normalized_loss: True
lsm_weight: 0
spk_embed_dim: !ref <spk_embed_dim>
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
input_size: !ref <text_encoder_input_size>
output_size: 1024
attention_heads: 8
linear_units: 2048
num_blocks: 3
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0
normalize_before: True
input_layer: 'linear'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
use_cnn_module: False
macaron_style: False
use_dynamic_chunk: False
use_dynamic_left_chunk: False
static_chunk_size: 1
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
input_size: !ref <llm_input_size>
output_size: !ref <llm_output_size>
attention_heads: 8
linear_units: 2048
num_blocks: 7
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0
input_layer: 'linear_legacy'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
static_chunk_size: 1
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
input_size: 512
output_size: 80
spk_embed_dim: !ref <spk_embed_dim>
output_type: 'mel'
vocab_size: 4096
input_frame_rate: 50
only_mask_loss: True
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
output_size: 512
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
normalize_before: True
input_layer: 'linear'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
input_size: 512
use_cnn_module: False
macaron_style: False
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
channels: 80
sampling_ratios: [1, 1, 1, 1]
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
in_channels: 240
n_spks: 1
spk_emb_dim: 80
cfm_params: !new:omegaconf.DictConfig
content:
sigma_min: 1e-06
solver: 'euler'
t_scheduler: 'cosine'
training_cfg_rate: 0.2
inference_cfg_rate: 0.7
reg_loss_type: 'l1'
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
in_channels: 320
out_channels: 80
channels: [256, 256]
dropout: 0
attention_head_dim: 64
n_blocks: 4
num_mid_blocks: 12
num_heads: 8
act_fn: 'gelu'
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
in_channels: 80
base_channels: 512
nb_harmonics: 8
sampling_rate: !ref <sample_rate>
nsf_alpha: 0.1
nsf_sigma: 0.003
nsf_voiced_threshold: 10
upsample_rates: [8, 8]
upsample_kernel_sizes: [16, 16]
istft_params:
n_fft: 16
hop_len: 4
resblock_kernel_sizes: [3, 7, 11]
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
source_resblock_kernel_sizes: [7, 11]
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
lrelu_slope: 0.1
audio_limit: 0.99
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
num_class: 1
in_channels: 80
cond_channels: 512
# processor functions
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
multilingual: True
num_languages: 100
language: 'en'
task: 'transcribe'
allowed_special: 'all'
tokenize: !name:cosyvoice.dataset.processor.tokenize
get_tokenizer: !ref <get_tokenizer>
allowed_special: !ref <allowed_special>
filter: !name:cosyvoice.dataset.processor.filter
max_length: 40960
min_length: 0
token_max_length: 200
token_min_length: 1
resample: !name:cosyvoice.dataset.processor.resample
resample_rate: !ref <sample_rate>
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
n_fft: 1024
num_mels: 80
sampling_rate: !ref <sample_rate>
hop_size: 256
win_size: 1024
fmin: 0
fmax: 8000
center: False
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
feat_extractor: !ref <feat_extractor>
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
normalize: True
shuffle: !name:cosyvoice.dataset.processor.shuffle
shuffle_size: 1000
sort: !name:cosyvoice.dataset.processor.sort
sort_size: 500 # sort_size should be less than shuffle_size
batch: !name:cosyvoice.dataset.processor.batch
batch_type: 'dynamic'
max_frames_in_batch: 12000
padding: !name:cosyvoice.dataset.processor.padding
# dataset processor pipeline
data_pipeline: [
!ref <parquet_opener>,
!ref <tokenize>,
!ref <filter>,
!ref <resample>,
!ref <compute_fbank>,
!ref <parse_embedding>,
!ref <shuffle>,
!ref <sort>,
!ref <batch>,
!ref <padding>,
]
# train conf
train_conf:
optim: adam
optim_conf:
lr: 0.002 # change to 0.001 if you want to train flow from scratch
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
max_epoch: 200
grad_clip: 5
accum_grad: 2
log_interval: 100
save_per_step: -1