Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append('{}/../../..'.format(ROOT_DIR)) | |
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR)) | |
from concurrent import futures | |
import argparse | |
import cosyvoice_pb2 | |
import cosyvoice_pb2_grpc | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
import grpc | |
import torch | |
import numpy as np | |
from cosyvoice.cli.cosyvoice import CosyVoice | |
logging.basicConfig(level=logging.DEBUG, | |
format='%(asctime)s %(levelname)s %(message)s') | |
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer): | |
def __init__(self, args): | |
self.cosyvoice = CosyVoice(args.model_dir) | |
logging.info('grpc service initialized') | |
def Inference(self, request, context): | |
if request.HasField('sft_request'): | |
logging.info('get sft inference request') | |
model_output = self.cosyvoice.inference_sft(request.sft_request.tts_text, request.sft_request.spk_id) | |
elif request.HasField('zero_shot_request'): | |
logging.info('get zero_shot inference request') | |
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.zero_shot_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0) | |
prompt_speech_16k = prompt_speech_16k.float() / (2**15) | |
model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text, request.zero_shot_request.prompt_text, prompt_speech_16k) | |
elif request.HasField('cross_lingual_request'): | |
logging.info('get cross_lingual inference request') | |
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.cross_lingual_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0) | |
prompt_speech_16k = prompt_speech_16k.float() / (2**15) | |
model_output = self.cosyvoice.inference_cross_lingual(request.cross_lingual_request.tts_text, prompt_speech_16k) | |
else: | |
logging.info('get instruct inference request') | |
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text, request.instruct_request.spk_id, request.instruct_request.instruct_text) | |
logging.info('send inference response') | |
for i in model_output: | |
response = cosyvoice_pb2.Response() | |
response.tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() | |
yield response | |
def main(): | |
grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc) | |
cosyvoice_pb2_grpc.add_CosyVoiceServicer_to_server(CosyVoiceServiceImpl(args), grpcServer) | |
grpcServer.add_insecure_port('0.0.0.0:{}'.format(args.port)) | |
grpcServer.start() | |
logging.info("server listening on 0.0.0.0:{}".format(args.port)) | |
grpcServer.wait_for_termination() | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--port', | |
type=int, | |
default=50000) | |
parser.add_argument('--max_conc', | |
type=int, | |
default=4) | |
parser.add_argument('--model_dir', | |
type=str, | |
default='iic/CosyVoice-300M', | |
help='local path or modelscope repo id') | |
args = parser.parse_args() | |
main() | |