File size: 4,128 Bytes
115cf00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7555afb
 
 
 
 
 
115cf00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/bin/bash
# Copyright 2024 Alibaba Inc. All Rights Reserved.
. ./path.sh || exit 1;

stage=-1
stop_stage=3

data_url=www.openslr.org/resources/68
data_dir=/mnt/hengwu.zty/data/tts/openslr/magicdata-read
pretrained_model_dir=../../../pretrained_models/CosyVoice-300M

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  echo "Data Download"
  for part in dev_set test_set train_set; do
    local/download_and_untar.sh ${data_dir} ${data_url} ${part}
  done
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
  for x in dev test train; do
    mkdir -p data/$x
    python local/prepare_data.py --src_dir $data_dir/$x --des_dir data/$x
  done
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
  for x in dev test train; do
    tools/extract_embedding.py --dir data/$x \
      --onnx_path $pretrained_model_dir/campplus.onnx
  done
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
  for x in dev test train; do
    tools/extract_speech_token.py --dir data/$x \
      --onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
  done
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
  for x in dev test train; do
    mkdir -p data/$x/parquet
    tools/make_parquet_list.py --num_utts_per_parquet 1000 \
      --num_processes 10 \
      --src_dir data/$x \
      --des_dir data/$x/parquet
  done
fi

# inference
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  echo "Run inference. Please make sure utt in tts_text is in prompt_data"
  for mode in sft zero_shot; do
    python cosyvoice/bin/inference.py --mode $mode \
      --gpu 0 \
      --config conf/cosyvoice.yaml \
      --prompt_data data/test/parquet/data.list \
      --prompt_utt2data data/test/parquet/utt2data.list \
      --tts_text `pwd`/tts_text.json \
      --llm_model $pretrained_model_dir/llm.pt \
      --flow_model $pretrained_model_dir/flow.pt \
      --hifigan_model $pretrained_model_dir/hift.pt \
      --result_dir `pwd`/exp/cosyvoice/test/$mode
  done
fi

# train llm
export CUDA_VISIBLE_DEVICES="0,1,2,3"
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
job_id=1986
dist_backend="nccl"
num_workers=2
prefetch=100
train_engine=torch_ddp
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
  if [ $train_engine == 'deepspeed' ]; then
    echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
  fi
  cp data/train/parquet/data.list data/train.data.list
  cp data/dev/parquet/data.list data/dev.data.list
  for model in llm; do
    torchrun --nnodes=1 --nproc_per_node=$num_gpus \
        --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
      cosyvoice/bin/train.py \
      --train_engine $train_engine \
      --config conf/cosyvoice.yaml \
      --train_data data/train.data.list \
      --cv_data data/dev.data.list \
      --model $model \
      --checkpoint $pretrained_model_dir/$model.pt \
      --model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
      --tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
      --ddp.dist_backend $dist_backend \
      --num_workers ${num_workers} \
      --prefetch ${prefetch} \
      --pin_memory \
      --deepspeed_config ./conf/ds_stage2.json \
      --deepspeed.save_states model+optimizer
  done
fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
  python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
  python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
fi