File size: 16,580 Bytes
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab298d
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
#               2024 Alibaba Inc (Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Decoder definition."""
from typing import Tuple, List, Optional

import torch
import torch.utils.checkpoint as ckpt
import logging

from cosyvoice.transformer.decoder_layer import DecoderLayer
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
from cosyvoice.utils.class_utils import (
    COSYVOICE_EMB_CLASSES,
    COSYVOICE_ATTENTION_CLASSES,
    COSYVOICE_ACTIVATION_CLASSES,
)
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)


class TransformerDecoder(torch.nn.Module):
    """Base class of Transfomer decoder module.
    Args:
        vocab_size: output dim
        encoder_output_size: dimension of attention
        attention_heads: the number of heads of multi head attention
        linear_units: the hidden units number of position-wise feedforward
        num_blocks: the number of decoder blocks
        dropout_rate: dropout rate
        self_attention_dropout_rate: dropout rate for attention
        input_layer: input layer type
        use_output_layer: whether to use output layer
        pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
        normalize_before:
            True: use layer_norm before each sub-block of a layer.
            False: use layer_norm after each sub-block of a layer.
        src_attention: if false, encoder-decoder cross attention is not
                       applied, such as CIF model
        key_bias: whether use bias in attention.linear_k, False for whisper models.
        gradient_checkpointing: rerunning a forward-pass segment for each
            checkpointed segment during backward.
        tie_word_embedding: Tie or clone module weights depending of whether we are
            using TorchScript or not
    """

    def __init__(
        self,
        vocab_size: int,
        encoder_output_size: int,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        self_attention_dropout_rate: float = 0.0,
        src_attention_dropout_rate: float = 0.0,
        input_layer: str = "embed",
        use_output_layer: bool = True,
        normalize_before: bool = True,
        src_attention: bool = True,
        key_bias: bool = True,
        activation_type: str = "relu",
        gradient_checkpointing: bool = False,
        tie_word_embedding: bool = False,
    ):
        super().__init__()
        attention_dim = encoder_output_size
        activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()

        self.embed = torch.nn.Sequential(
            torch.nn.Identity() if input_layer == "no_pos" else
            torch.nn.Embedding(vocab_size, attention_dim),
            COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
                                               positional_dropout_rate),
        )

        self.normalize_before = normalize_before
        self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
        self.use_output_layer = use_output_layer
        if use_output_layer:
            self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
        else:
            self.output_layer = torch.nn.Identity()
        self.num_blocks = num_blocks
        self.decoders = torch.nn.ModuleList([
            DecoderLayer(
                attention_dim,
                COSYVOICE_ATTENTION_CLASSES["selfattn"](
                    attention_heads, attention_dim,
                    self_attention_dropout_rate, key_bias),
                COSYVOICE_ATTENTION_CLASSES["selfattn"](
                    attention_heads, attention_dim, src_attention_dropout_rate,
                    key_bias) if src_attention else None,
                PositionwiseFeedForward(attention_dim, linear_units,
                                        dropout_rate, activation),
                dropout_rate,
                normalize_before,
            ) for _ in range(self.num_blocks)
        ])

        self.gradient_checkpointing = gradient_checkpointing
        self.tie_word_embedding = tie_word_embedding

    def forward(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        ys_in_pad: torch.Tensor,
        ys_in_lens: torch.Tensor,
        r_ys_in_pad: torch.Tensor = torch.empty(0),
        reverse_weight: float = 0.0,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Forward decoder.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoder memory mask, (batch, 1, maxlen_in)
            ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
            ys_in_lens: input lengths of this batch (batch)
            r_ys_in_pad: not used in transformer decoder, in order to unify api
                with bidirectional decoder
            reverse_weight: not used in transformer decoder, in order to unify
                api with bidirectional decode
        Returns:
            (tuple): tuple containing:
                x: decoded token score before softmax (batch, maxlen_out,
                    vocab_size) if use_output_layer is True,
                torch.tensor(0.0), in order to unify api with bidirectional decoder
                olens: (batch, )
        NOTE(xcsong):
            We pass the `__call__` method of the modules instead of `forward` to the
            checkpointing API because `__call__` attaches all the hooks of the module.
            https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
        """
        tgt = ys_in_pad
        maxlen = tgt.size(1)
        # tgt_mask: (B, 1, L)
        tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
        tgt_mask = tgt_mask.to(tgt.device)
        # m: (1, L, L)
        m = subsequent_mask(tgt_mask.size(-1),
                            device=tgt_mask.device).unsqueeze(0)
        # tgt_mask: (B, L, L)
        tgt_mask = tgt_mask & m
        x, _ = self.embed(tgt)
        if self.gradient_checkpointing and self.training:
            x = self.forward_layers_checkpointed(x, tgt_mask, memory,
                                                 memory_mask)
        else:
            x = self.forward_layers(x, tgt_mask, memory, memory_mask)
        if self.normalize_before:
            x = self.after_norm(x)
        if self.use_output_layer:
            x = self.output_layer(x)
        olens = tgt_mask.sum(1)
        return x, torch.tensor(0.0), olens

    def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
                       memory: torch.Tensor,
                       memory_mask: torch.Tensor) -> torch.Tensor:
        for layer in self.decoders:
            x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
                                                     memory_mask)
        return x

    @torch.jit.unused
    def forward_layers_checkpointed(self, x: torch.Tensor,
                                    tgt_mask: torch.Tensor,
                                    memory: torch.Tensor,
                                    memory_mask: torch.Tensor) -> torch.Tensor:
        for layer in self.decoders:
            x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
                layer.__call__, x, tgt_mask, memory, memory_mask)
        return x

    def forward_one_step(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        tgt: torch.Tensor,
        tgt_mask: torch.Tensor,
        cache: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        """Forward one step.
            This is only used for decoding.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoded memory mask, (batch, 1, maxlen_in)
            tgt: input token ids, int64 (batch, maxlen_out)
            tgt_mask: input token mask,  (batch, maxlen_out)
                      dtype=torch.uint8 in PyTorch 1.2-
                      dtype=torch.bool in PyTorch 1.2+ (include 1.2)
            cache: cached output list of (batch, max_time_out-1, size)
        Returns:
            y, cache: NN output value and cache per `self.decoders`.
            y.shape` is (batch, maxlen_out, token)
        """
        x, _ = self.embed(tgt)
        new_cache = []
        for i, decoder in enumerate(self.decoders):
            if cache is None:
                c = None
            else:
                c = cache[i]
            x, tgt_mask, memory, memory_mask = decoder(x,
                                                       tgt_mask,
                                                       memory,
                                                       memory_mask,
                                                       cache=c)
            new_cache.append(x)
        if self.normalize_before:
            y = self.after_norm(x[:, -1])
        else:
            y = x[:, -1]
        if self.use_output_layer:
            y = torch.log_softmax(self.output_layer(y), dim=-1)
        return y, new_cache

    def tie_or_clone_weights(self, jit_mode: bool = True):
        """Tie or clone module weights (between word_emb and output_layer)
            depending of whether we are using TorchScript or not"""
        if not self.use_output_layer:
            return
        if jit_mode:
            logging.info("clone emb.weight to output.weight")
            self.output_layer.weight = torch.nn.Parameter(
                self.embed[0].weight.clone())
        else:
            logging.info("tie emb.weight with output.weight")
            self.output_layer.weight = self.embed[0].weight

        if getattr(self.output_layer, "bias", None) is not None:
            self.output_layer.bias.data = torch.nn.functional.pad(
                self.output_layer.bias.data,
                (
                    0,
                    self.output_layer.weight.shape[0] -
                    self.output_layer.bias.shape[0],
                ),
                "constant",
                0,
            )


class BiTransformerDecoder(torch.nn.Module):
    """Base class of Transfomer decoder module.
    Args:
        vocab_size: output dim
        encoder_output_size: dimension of attention
        attention_heads: the number of heads of multi head attention
        linear_units: the hidden units number of position-wise feedforward
        num_blocks: the number of decoder blocks
        r_num_blocks: the number of right to left decoder blocks
        dropout_rate: dropout rate
        self_attention_dropout_rate: dropout rate for attention
        input_layer: input layer type
        use_output_layer: whether to use output layer
        pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
        normalize_before:
            True: use layer_norm before each sub-block of a layer.
            False: use layer_norm after each sub-block of a layer.
        key_bias: whether use bias in attention.linear_k, False for whisper models.
    """

    def __init__(
        self,
        vocab_size: int,
        encoder_output_size: int,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        r_num_blocks: int = 0,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        self_attention_dropout_rate: float = 0.0,
        src_attention_dropout_rate: float = 0.0,
        input_layer: str = "embed",
        use_output_layer: bool = True,
        normalize_before: bool = True,
        key_bias: bool = True,
        gradient_checkpointing: bool = False,
        tie_word_embedding: bool = False,
    ):

        super().__init__()
        self.tie_word_embedding = tie_word_embedding
        self.left_decoder = TransformerDecoder(
            vocab_size,
            encoder_output_size,
            attention_heads,
            linear_units,
            num_blocks,
            dropout_rate,
            positional_dropout_rate,
            self_attention_dropout_rate,
            src_attention_dropout_rate,
            input_layer,
            use_output_layer,
            normalize_before,
            key_bias=key_bias,
            gradient_checkpointing=gradient_checkpointing,
            tie_word_embedding=tie_word_embedding)

        self.right_decoder = TransformerDecoder(
            vocab_size,
            encoder_output_size,
            attention_heads,
            linear_units,
            r_num_blocks,
            dropout_rate,
            positional_dropout_rate,
            self_attention_dropout_rate,
            src_attention_dropout_rate,
            input_layer,
            use_output_layer,
            normalize_before,
            key_bias=key_bias,
            gradient_checkpointing=gradient_checkpointing,
            tie_word_embedding=tie_word_embedding)

    def forward(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        ys_in_pad: torch.Tensor,
        ys_in_lens: torch.Tensor,
        r_ys_in_pad: torch.Tensor,
        reverse_weight: float = 0.0,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Forward decoder.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoder memory mask, (batch, 1, maxlen_in)
            ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
            ys_in_lens: input lengths of this batch (batch)
            r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
                used for right to left decoder
            reverse_weight: used for right to left decoder
        Returns:
            (tuple): tuple containing:
                x: decoded token score before softmax (batch, maxlen_out,
                    vocab_size) if use_output_layer is True,
                r_x: x: decoded token score (right to left decoder)
                    before softmax (batch, maxlen_out, vocab_size)
                    if use_output_layer is True,
                olens: (batch, )
        """
        l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
                                          ys_in_lens)
        r_x = torch.tensor(0.0)
        if reverse_weight > 0.0:
            r_x, _, olens = self.right_decoder(memory, memory_mask,
                                               r_ys_in_pad, ys_in_lens)
        return l_x, r_x, olens

    def forward_one_step(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        tgt: torch.Tensor,
        tgt_mask: torch.Tensor,
        cache: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        """Forward one step.
            This is only used for decoding.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoded memory mask, (batch, 1, maxlen_in)
            tgt: input token ids, int64 (batch, maxlen_out)
            tgt_mask: input token mask,  (batch, maxlen_out)
                      dtype=torch.uint8 in PyTorch 1.2-
                      dtype=torch.bool in PyTorch 1.2+ (include 1.2)
            cache: cached output list of (batch, max_time_out-1, size)
        Returns:
            y, cache: NN output value and cache per `self.decoders`.
            y.shape` is (batch, maxlen_out, token)
        """
        return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
                                                  tgt_mask, cache)

    def tie_or_clone_weights(self, jit_mode: bool = True):
        """Tie or clone module weights (between word_emb and output_layer)
            depending of whether we are using TorchScript or not"""
        self.left_decoder.tie_or_clone_weights(jit_mode)
        self.right_decoder.tie_or_clone_weights(jit_mode)