Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,146 Bytes
076829a 7123846 f4e70e2 1d881df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
# 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Unility functions for Transformer."""
from typing import List
import torch
IGNORE_ID = -1
def pad_list(xs: List[torch.Tensor], pad_value: int):
"""Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
"""
max_len = max([len(item) for item in xs])
batchs = len(xs)
ndim = xs[0].ndim
if ndim == 1:
pad_res = torch.zeros(batchs,
max_len,
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 2:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 3:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
xs[0].shape[2],
dtype=xs[0].dtype,
device=xs[0].device)
else:
raise ValueError(f"Unsupported ndim: {ndim}")
pad_res.fill_(pad_value)
for i in range(batchs):
pad_res[i, :len(xs[i])] = xs[i]
return pad_res
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
ignore_label: int) -> torch.Tensor:
"""Calculate accuracy.
Args:
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
pad_targets (LongTensor): Target label tensors (B, Lmax).
ignore_label (int): Ignore label id.
Returns:
torch.Tensor: Accuracy value (0.0 - 1.0).
"""
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
pad_outputs.size(1)).argmax(2)
mask = pad_targets != ignore_label
numerator = torch.sum(
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
denominator = torch.sum(mask)
return (numerator / denominator).detach()
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
# Repetition Aware Sampling in VALL-E 2
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
if rep_num >= win_size * tau_r:
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
return top_ids
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
prob, indices = [], []
cum_prob = 0.0
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
for i in range(len(sorted_idx)):
# sampling both top-p and numbers.
if cum_prob < top_p and len(prob) < top_k:
cum_prob += sorted_value[i]
prob.append(sorted_value[i])
indices.append(sorted_idx[i])
else:
break
prob = torch.tensor(prob).to(weighted_scores)
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
top_ids = indices[prob.multinomial(1, replacement=True)]
return top_ids
def random_sampling(weighted_scores, decoded_tokens, sampling):
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
return top_ids
def fade_in_out(fade_in_mel, fade_out_mel, window):
device = fade_in_mel.device
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
mel_overlap_len = int(window.shape[0] / 2)
fade_in_mel[:, :, :mel_overlap_len] = fade_in_mel[:, :, :mel_overlap_len] * window[:mel_overlap_len] + fade_out_mel[:, :, -mel_overlap_len:] * window[mel_overlap_len:]
return fade_in_mel.to(device)
|