Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,946 Bytes
076829a 5f21aef 076829a a13411c 02f941d f4e70e2 a13411c 076829a f4e70e2 1d881df f4e70e2 1d881df f4e70e2 02f941d f4e70e2 1d881df 076829a 9ab298d 076829a f1e374a 9ab298d 5f21aef 18599be 5f21aef 2940836 f1e374a 1d881df 02f941d a13411c 1d881df a13411c 1d881df a13411c 1d881df 9ab298d a13411c f4e70e2 1d881df 02f941d 1d881df 02f941d 1d881df 02f941d 1d881df 02f941d 1d881df 02f941d 1d881df 02f941d 1d881df f4e70e2 1d881df f4e70e2 1d881df 02f941d 1d881df 02f941d 1d881df 02f941d 1d881df 02f941d 1d881df f4e70e2 1d881df 02f941d 1d881df f4e70e2 1d881df f4e70e2 1d881df a13411c f4e70e2 1d881df f4e70e2 1d881df f4e70e2 1d881df f4e70e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import numpy as np
import threading
import time
from contextlib import nullcontext
import uuid
from cosyvoice.utils.common import fade_in_out
class CosyVoiceModel:
def __init__(self,
llm: torch.nn.Module,
flow: torch.nn.Module,
hift: torch.nn.Module):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm
self.flow = flow
self.hift = hift
self.token_min_hop_len = 100
self.token_max_hop_len = 200
self.token_overlap_len = 20
# mel fade in out
self.mel_overlap_len = 34
self.mel_window = np.hamming(2 * self.mel_overlap_len)
# hift cache
self.mel_cache_len = 20
self.source_cache_len = int(self.mel_cache_len * 256)
# rtf and decoding related
self.stream_scale_factor = 1
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
# dict used to store session related variable
self.tts_speech_token_dict = {}
self.llm_end_dict = {}
self.mel_overlap_dict = {}
self.hift_cache_dict = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
self.llm.to(self.device).eval()
self.llm.half()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
self.flow.to(self.device).eval()
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
self.hift.to(self.device).eval()
def load_jit(self, llm_text_encoder_model, llm_llm_model):
llm_text_encoder = torch.jit.load(llm_text_encoder_model)
self.llm.text_encoder = llm_text_encoder
llm_llm = torch.jit.load(llm_llm_model)
self.llm.llm = llm_llm
def load_trt(self, model_dir, use_fp16):
import tensorrt as trt
trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
trt_file_path = os.path.join(model_dir, trt_file_name)
if not os.path.isfile(trt_file_path):
raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
trt.init_libnvinfer_plugins(None, "")
logger = trt.Logger(trt.Logger.WARNING)
runtime = trt.Runtime(logger)
with open(trt_file_path, 'rb') as f:
serialized_engine = f.read()
engine = runtime.deserialize_cuda_engine(serialized_engine)
self.flow.decoder.estimator_context = engine.create_execution_context()
self.flow.decoder.estimator = None
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
with self.llm_context:
for i in self.llm.inference(text=text.to(self.device),
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
prompt_text=prompt_text.to(self.device),
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
prompt_speech_token=llm_prompt_speech_token.to(self.device),
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
embedding=llm_embedding.to(self.device).half(),
sampling=25,
max_token_text_ratio=30,
min_token_text_ratio=3):
self.tts_speech_token_dict[uuid].append(i)
self.llm_end_dict[uuid] = True
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
with self.flow_hift_context:
tts_mel = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=embedding.to(self.device))
# mel overlap fade in out
if self.mel_overlap_dict[uuid] is not None:
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
else:
hift_cache_source = torch.zeros(1, 1, 0)
# keep overlap mel and hift cache
if finalize is False:
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
tts_speech = tts_speech[:, :-self.source_cache_len]
else:
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
return tts_speech
def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
p.start()
p.join()
if stream is True:
token_hop_len = self.token_min_hop_len
while True:
time.sleep(0.1)
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
with self.flow_hift_context:
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=False)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
# increase token_hop_len for better speech quality
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
break
# p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
with self.flow_hift_context:
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True)
yield {'tts_speech': this_tts_speech.cpu()}
else:
# deal with all tokens
# p.join()
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
with self.flow_hift_context:
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict.pop(this_uuid)
self.llm_end_dict.pop(this_uuid)
self.mel_overlap_dict.pop(this_uuid)
self.hift_cache_dict.pop(this_uuid)
torch.cuda.synchronize()
|