Spaces:
Running
Running
File size: 5,486 Bytes
9066d0b b6e6733 9066d0b b6e6733 9066d0b c1a6c5e b6e6733 c1a6c5e b6e6733 9066d0b c1a6c5e b6e6733 c1a6c5e 9066d0b c1a6c5e 9031590 c1a6c5e 9066d0b c1a6c5e 76d1760 c1a6c5e b6e6733 c1a6c5e b6e6733 c1a6c5e 9066d0b c1a6c5e 9066d0b c1a6c5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
from io import BytesIO
from multiprocessing import Pool, cpu_count
from datasets import load_dataset
from PIL import Image
import gradio as gr
import pandas as pd
imagenet_hard_dataset = load_dataset("taesiri/imagenet-hard", split="validation")
THUMBNAIL_PATH = "dataset/thumbnails"
os.makedirs(THUMBNAIL_PATH, exist_ok=True)
max_size = (480, 480)
all_origins = set()
all_labels = set()
dataset_df = None
def process_image(i):
global all_origins
image = imagenet_hard_dataset[i]["image"].convert("RGB")
url_prefix = "https://imagenet-hard.taesiri.ai/"
origin = imagenet_hard_dataset[i]["origin"]
label = imagenet_hard_dataset[i]["english_label"]
save_path = os.path.join(THUMBNAIL_PATH, origin)
# make sure the folder exists
os.makedirs(save_path, exist_ok=True)
image_path = os.path.join(save_path, f"{i}.jpg")
image.thumbnail(max_size, Image.LANCZOS)
image.save(image_path, "JPEG", quality=100)
url = url_prefix + image_path
return {
"preview": url,
"filepath": image_path,
"origin": imagenet_hard_dataset[i]["origin"],
"labels": imagenet_hard_dataset[i]["english_label"],
}
# PREPROCESSING
if os.path.exists("dataset.pkl"):
dataset_df = pd.read_pickle("dataset.pkl")
all_origins = set(dataset_df["origin"])
all_labels = set().union(*dataset_df["labels"])
else:
with Pool(cpu_count()) as pool:
samples_data = pool.map(process_image, range(len(imagenet_hard_dataset)))
dataset_df = pd.DataFrame(samples_data)
print(dataset_df)
all_origins = set(dataset_df["origin"])
all_labels = set().union(*dataset_df["labels"])
# save dataframe on disk
dataset_df.to_csv("dataset.csv")
dataset_df.to_pickle("dataset.pkl")
def get_slice(origin, label):
global dataset_df
if not origin and not label:
filtered_df = dataset_df
else:
filtered_df = dataset_df[
(dataset_df["origin"] == origin if origin else True)
& (dataset_df["labels"].apply(lambda x: label in x) if label else True)
]
max_value = len(filtered_df) // 16
returned_values = []
start_index = 0
end_index = start_index + 16
slice_df = filtered_df.iloc[start_index:end_index]
for row in slice_df.itertuples():
returned_values.append(gr.update(value=row.preview))
returned_values.append(gr.update(value=row.origin))
returned_values.append(gr.update(value=row.labels))
if len(returned_values) < 48:
returned_values.extend([None] * (48 - len(returned_values)))
filtered_df = gr.Dataframe(filtered_df, datatype="markdown")
return filtered_df, gr.update(maximum=max_value, value=0), *returned_values
def reset_filters_fn():
return gr.update(value=None), gr.update(value=None)
def make_grid(grid_size):
list_of_components = []
with gr.Row():
for row_counter in range(grid_size[0]):
with gr.Column():
for col_counter in range(grid_size[1]):
item_image = gr.Image()
with gr.Accordion("Click for details", open=False):
item_source = gr.Textbox(label="Source Dataset")
item_labels = gr.Textbox(label="Labels")
list_of_components.append(item_image)
list_of_components.append(item_source)
list_of_components.append(item_labels)
return list_of_components
def slider_upadte(slider, df):
returned_values = []
start_index = (slider) * 16
end_index = start_index + 16
slice_df = df.iloc[start_index:end_index]
for row in slice_df.itertuples():
returned_values.append(gr.update(value=row.preview))
returned_values.append(gr.update(value=row.origin))
returned_values.append(gr.update(value=row.labels))
if len(returned_values) < 48:
returned_values.extend([None] * (48 - len(returned_values)))
return returned_values
with gr.Blocks() as demo:
gr.Markdown("# ImageNet-Hard Browser")
# add link to home page and dataset
gr.HTML("")
gr.HTML()
gr.HTML(
"""
<center>
<span style="font-size: 14px; vertical-align: middle;">
<a href='https://zoom.taesiri.ai/'>Project Home Page</a> |
<a href='https://huggingface.co/datasets/taesiri/imagenet-hard'>Dataset</a>
</span>
</center>
"""
)
with gr.Row():
origin_dropdown = gr.Dropdown(all_origins, label="Origin")
label_dropdown = gr.Dropdown(all_labels, label="Label")
with gr.Row():
show_btn = gr.Button("Show")
reset_filters = gr.Button("Reset Filters")
preview_dataframe = gr.Dataframe(height=500, visible=False)
gr.Markdown("## Preview")
maximum_vale = len(dataset_df) // 16
preview_slider = gr.Slider(minimum=1, maximum=maximum_vale, step=1, value=1)
all_components = make_grid((4, 4))
show_btn.click(
fn=get_slice,
inputs=[origin_dropdown, label_dropdown],
outputs=[preview_dataframe, preview_slider, *all_components],
)
reset_filters.click(
fn=reset_filters_fn,
inputs=[],
outputs=[origin_dropdown, label_dropdown],
)
preview_slider.change(
fn=slider_upadte,
inputs=[preview_slider, preview_dataframe],
outputs=[*all_components],
)
demo.launch()
|