tae98 commited on
Commit
762c3e5
·
1 Parent(s): 34b8876

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -4
app.py CHANGED
@@ -14,7 +14,7 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -23,7 +23,6 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
23
 
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
- print(outputs["text"])
27
  return outputs["text"]
28
 
29
 
@@ -44,7 +43,6 @@ title = "Cascaded STST"
44
  description = """
45
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
46
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
47
-
48
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
49
  """
50
 
@@ -70,4 +68,4 @@ file_translate = gr.Interface(
70
  with demo:
71
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
72
 
73
- demo.launch()
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
23
 
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
26
  return outputs["text"]
27
 
28
 
 
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
46
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
47
  """
48
 
 
68
  with demo:
69
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
70
 
71
+ demo.launch()