SOP_RAG / app.py
t2ag3's picture
Update app.py
7e744b1 verified
raw
history blame
2.63 kB
import gradio as gr
from huggingface_hub import InferenceClient
from langchain_core.vectorstores import InMemoryVectorStore
from langchain.chains import RetrievalQA
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_groq import ChatGroq
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
model_name = "llama-3.3-70b-versatile"
groq_api_key = "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"
groq_chat = ChatGroq(groq_api_key=groq_api_key, model_name=model_name)
embeddings = HuggingFaceEmbeddings(
model_name = "pkshatech/GLuCoSE-base-ja"
)
vector_store = InMemoryVectorStore.load(
"/content/sample_data/kinousei_vector_store", embeddings
)
retriever = vector_store.as_retriever(search_kwargs={"k": 4})
def fetch_response(user_input):
chat = ChatGroq(
api_key = groq_api_key,
model_name = model_name
)
system_prompt = (
"あなたは便利なアシスタントです。"
"マニュアルの内容から回答してください。"
"\n\n"
"{context}"
)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
# ドキュメントのリストを渡せるchainを作成
question_answer_chain = create_stuff_documents_chain(groq_chat, prompt)
# RetrieverとQAチェーンを組み合わせてRAGチェーンを作成
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
response = rag_chain.invoke({"input": user_input})
return [response["answer"], response["context"][0], response["context"][1]]
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with gr.Blocks() as demo:
gr.Markdown('''# SOP事業マスター \n
SOP作成研究に関して、公募要領やQAを参考にRAGを使って回答します。
''')
with gr.Row():
with gr.Column():
user_input = gr.Textbox(label="User Input")
submit = gr.Button("Submit")
answer = gr.Textbox(label="Answer")
with gr.Row():
with gr.Column():
source1 = gr.Textbox(label="回答ソース1")
with gr.Column():
source2 = gr.Textbox(label="回答ソース2")
submit.click(fetch_response, inputs=user_input, outputs=[answer, source1, source2])
if __name__ == "__main__":
demo.launch()