Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import numpy as np | |
from torch.nn.functional import silu | |
from einops import rearrange | |
from utils.general_utils import quaternion_raw_multiply | |
from utils.graphics_utils import fov2focal | |
# U-Net implementation from EDM | |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# This work is licensed under a Creative Commons | |
# Attribution-NonCommercial-ShareAlike 4.0 International License. | |
# You should have received a copy of the license along with this | |
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
"""Model architectures and preconditioning schemes used in the paper | |
"Elucidating the Design Space of Diffusion-Based Generative Models".""" | |
#---------------------------------------------------------------------------- | |
# Unified routine for initializing weights and biases. | |
def weight_init(shape, mode, fan_in, fan_out): | |
if mode == 'xavier_uniform': return np.sqrt(6 / (fan_in + fan_out)) * (torch.rand(*shape) * 2 - 1) | |
if mode == 'xavier_normal': return np.sqrt(2 / (fan_in + fan_out)) * torch.randn(*shape) | |
if mode == 'kaiming_uniform': return np.sqrt(3 / fan_in) * (torch.rand(*shape) * 2 - 1) | |
if mode == 'kaiming_normal': return np.sqrt(1 / fan_in) * torch.randn(*shape) | |
raise ValueError(f'Invalid init mode "{mode}"') | |
#---------------------------------------------------------------------------- | |
# Fully-connected layer. | |
class Linear(torch.nn.Module): | |
def __init__(self, in_features, out_features, bias=True, init_mode='kaiming_normal', init_weight=1, init_bias=0): | |
super().__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
init_kwargs = dict(mode=init_mode, fan_in=in_features, fan_out=out_features) | |
self.weight = torch.nn.Parameter(weight_init([out_features, in_features], **init_kwargs) * init_weight) | |
self.bias = torch.nn.Parameter(weight_init([out_features], **init_kwargs) * init_bias) if bias else None | |
def forward(self, x): | |
x = x @ self.weight.to(x.dtype).t() | |
if self.bias is not None: | |
x = x.add_(self.bias.to(x.dtype)) | |
return x | |
#---------------------------------------------------------------------------- | |
# Convolutional layer with optional up/downsampling. | |
class Conv2d(torch.nn.Module): | |
def __init__(self, | |
in_channels, out_channels, kernel, bias=True, up=False, down=False, | |
resample_filter=[1,1], fused_resample=False, init_mode='kaiming_normal', init_weight=1, init_bias=0, | |
): | |
assert not (up and down) | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.up = up | |
self.down = down | |
self.fused_resample = fused_resample | |
init_kwargs = dict(mode=init_mode, fan_in=in_channels*kernel*kernel, fan_out=out_channels*kernel*kernel) | |
self.weight = torch.nn.Parameter(weight_init([out_channels, in_channels, kernel, kernel], **init_kwargs) * init_weight) if kernel else None | |
self.bias = torch.nn.Parameter(weight_init([out_channels], **init_kwargs) * init_bias) if kernel and bias else None | |
f = torch.as_tensor(resample_filter, dtype=torch.float32) | |
f = f.ger(f).unsqueeze(0).unsqueeze(1) / f.sum().square() | |
self.register_buffer('resample_filter', f if up or down else None) | |
def forward(self, x, N_views_xa=1): | |
w = self.weight.to(x.dtype) if self.weight is not None else None | |
b = self.bias.to(x.dtype) if self.bias is not None else None | |
f = self.resample_filter.to(x.dtype) if self.resample_filter is not None else None | |
w_pad = w.shape[-1] // 2 if w is not None else 0 | |
f_pad = (f.shape[-1] - 1) // 2 if f is not None else 0 | |
if self.fused_resample and self.up and w is not None: | |
x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=max(f_pad - w_pad, 0)) | |
x = torch.nn.functional.conv2d(x, w, padding=max(w_pad - f_pad, 0)) | |
elif self.fused_resample and self.down and w is not None: | |
x = torch.nn.functional.conv2d(x, w, padding=w_pad+f_pad) | |
x = torch.nn.functional.conv2d(x, f.tile([self.out_channels, 1, 1, 1]), groups=self.out_channels, stride=2) | |
else: | |
if self.up: | |
x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad) | |
if self.down: | |
x = torch.nn.functional.conv2d(x, f.tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad) | |
if w is not None: | |
x = torch.nn.functional.conv2d(x, w, padding=w_pad) | |
if b is not None: | |
x = x.add_(b.reshape(1, -1, 1, 1)) | |
return x | |
#---------------------------------------------------------------------------- | |
# Group normalization. | |
class GroupNorm(torch.nn.Module): | |
def __init__(self, num_channels, num_groups=32, min_channels_per_group=4, eps=1e-5): | |
super().__init__() | |
self.num_groups = min(num_groups, num_channels // min_channels_per_group) | |
self.eps = eps | |
self.weight = torch.nn.Parameter(torch.ones(num_channels)) | |
self.bias = torch.nn.Parameter(torch.zeros(num_channels)) | |
def forward(self, x, N_views_xa=1): | |
x = torch.nn.functional.group_norm(x, num_groups=self.num_groups, weight=self.weight.to(x.dtype), bias=self.bias.to(x.dtype), eps=self.eps) | |
return x.to(memory_format=torch.channels_last) | |
#---------------------------------------------------------------------------- | |
# Attention weight computation, i.e., softmax(Q^T * K). | |
# Performs all computation using FP32, but uses the original datatype for | |
# inputs/outputs/gradients to conserve memory. | |
class AttentionOp(torch.autograd.Function): | |
def forward(ctx, q, k): | |
w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype) | |
ctx.save_for_backward(q, k, w) | |
return w | |
def backward(ctx, dw): | |
q, k, w = ctx.saved_tensors | |
db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32) | |
dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype) / np.sqrt(k.shape[1]) | |
dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype) / np.sqrt(k.shape[1]) | |
return dq, dk | |
#---------------------------------------------------------------------------- | |
# Timestep embedding used in the DDPM++ and ADM architectures. | |
class PositionalEmbedding(torch.nn.Module): | |
def __init__(self, num_channels, max_positions=10000, endpoint=False): | |
super().__init__() | |
self.num_channels = num_channels | |
self.max_positions = max_positions | |
self.endpoint = endpoint | |
def forward(self, x): | |
b, c = x.shape | |
x = rearrange(x, 'b c -> (b c)') | |
freqs = torch.arange(start=0, end=self.num_channels//2, dtype=torch.float32, device=x.device) | |
freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0)) | |
freqs = (1 / self.max_positions) ** freqs | |
x = x.ger(freqs.to(x.dtype)) | |
x = torch.cat([x.cos(), x.sin()], dim=1) | |
x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b) | |
return x | |
#---------------------------------------------------------------------------- | |
# Timestep embedding used in the NCSN++ architecture. | |
class FourierEmbedding(torch.nn.Module): | |
def __init__(self, num_channels, scale=16): | |
super().__init__() | |
self.register_buffer('freqs', torch.randn(num_channels // 2) * scale) | |
def forward(self, x): | |
b, c = x.shape | |
x = rearrange(x, 'b c -> (b c)') | |
x = x.ger((2 * np.pi * self.freqs).to(x.dtype)) | |
x = torch.cat([x.cos(), x.sin()], dim=1) | |
x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b) | |
return x | |
class CrossAttentionBlock(torch.nn.Module): | |
def __init__(self, num_channels, num_heads = 1, eps=1e-5): | |
super().__init__() | |
self.num_heads = 1 | |
init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2)) | |
init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5) | |
self.norm = GroupNorm(num_channels=num_channels, eps=eps) | |
self.q_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=1, **init_attn) | |
self.kv_proj = Conv2d(in_channels=num_channels, out_channels=num_channels*2, kernel=1, **init_attn) | |
self.out_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=3, **init_zero) | |
def forward(self, q, kv): | |
q_proj = self.q_proj(self.norm(q)).reshape(q.shape[0] * self.num_heads, q.shape[1] // self.num_heads, -1) | |
k_proj, v_proj = self.kv_proj(self.norm(kv)).reshape(kv.shape[0] * self.num_heads, | |
kv.shape[1] // self.num_heads, 2, -1).unbind(2) | |
w = AttentionOp.apply(q_proj, k_proj) | |
a = torch.einsum('nqk,nck->ncq', w, v_proj) | |
x = self.out_proj(a.reshape(*q.shape)).add_(q) | |
return x | |
#---------------------------------------------------------------------------- | |
# Unified U-Net block with optional up/downsampling and self-attention. | |
# Represents the union of all features employed by the DDPM++, NCSN++, and | |
# ADM architectures. | |
class UNetBlock(torch.nn.Module): | |
def __init__(self, | |
in_channels, out_channels, emb_channels, up=False, down=False, attention=False, | |
num_heads=None, channels_per_head=64, dropout=0, skip_scale=1, eps=1e-5, | |
resample_filter=[1,1], resample_proj=False, adaptive_scale=True, | |
init=dict(), init_zero=dict(init_weight=0), init_attn=None, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if emb_channels is not None: | |
self.affine = Linear(in_features=emb_channels, out_features=out_channels*(2 if adaptive_scale else 1), **init) | |
self.num_heads = 0 if not attention else num_heads if num_heads is not None else out_channels // channels_per_head | |
self.dropout = dropout | |
self.skip_scale = skip_scale | |
self.adaptive_scale = adaptive_scale | |
self.norm0 = GroupNorm(num_channels=in_channels, eps=eps) | |
self.conv0 = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=3, up=up, down=down, resample_filter=resample_filter, **init) | |
self.norm1 = GroupNorm(num_channels=out_channels, eps=eps) | |
self.conv1 = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=3, **init_zero) | |
self.skip = None | |
if out_channels != in_channels or up or down: | |
kernel = 1 if resample_proj or out_channels!= in_channels else 0 | |
self.skip = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=kernel, up=up, down=down, resample_filter=resample_filter, **init) | |
if self.num_heads: | |
self.norm2 = GroupNorm(num_channels=out_channels, eps=eps) | |
self.qkv = Conv2d(in_channels=out_channels, out_channels=out_channels*3, kernel=1, **(init_attn if init_attn is not None else init)) | |
self.proj = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=1, **init_zero) | |
def forward(self, x, emb=None, N_views_xa=1): | |
orig = x | |
x = self.conv0(silu(self.norm0(x))) | |
if emb is not None: | |
params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype) | |
if self.adaptive_scale: | |
scale, shift = params.chunk(chunks=2, dim=1) | |
x = silu(torch.addcmul(shift, self.norm1(x), scale + 1)) | |
else: | |
x = silu(self.norm1(x.add_(params))) | |
x = silu(self.norm1(x)) | |
x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training)) | |
x = x.add_(self.skip(orig) if self.skip is not None else orig) | |
x = x * self.skip_scale | |
if self.num_heads: | |
if N_views_xa != 1: | |
B, C, H, W = x.shape | |
# (B, C, H, W) -> (B/N, N, C, H, W) -> (B/N, N, H, W, C) | |
x = x.reshape(B // N_views_xa, N_views_xa, *x.shape[1:]).permute(0, 1, 3, 4, 2) | |
# (B/N, N, H, W, C) -> (B/N, N*H, W, C) -> (B/N, C, N*H, W) | |
x = x.reshape(B // N_views_xa, N_views_xa * x.shape[2], *x.shape[3:]).permute(0, 3, 1, 2) | |
q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2) | |
w = AttentionOp.apply(q, k) | |
a = torch.einsum('nqk,nck->ncq', w, v) | |
x = self.proj(a.reshape(*x.shape)).add_(x) | |
x = x * self.skip_scale | |
if N_views_xa != 1: | |
# (B/N, C, N*H, W) -> (B/N, N*H, W, C) | |
x = x.permute(0, 2, 3, 1) | |
# (B/N, N*H, W, C) -> (B/N, N, H, W, C) -> (B/N, N, C, H, W) | |
x = x.reshape(B // N_views_xa, N_views_xa, H, W, C).permute(0, 1, 4, 2, 3) | |
# (B/N, N, C, H, W) -> # (B, C, H, W) | |
x = x.reshape(B, C, H, W) | |
return x | |
#---------------------------------------------------------------------------- | |
# Reimplementation of the DDPM++ and NCSN++ architectures from the paper | |
# "Score-Based Generative Modeling through Stochastic Differential | |
# Equations". Equivalent to the original implementation by Song et al., | |
# available at https://github.com/yang-song/score_sde_pytorch | |
# taken from EDM repository https://github.com/NVlabs/edm/blob/main/training/networks.py#L372 | |
class SongUNet(nn.Module): | |
def __init__(self, | |
img_resolution, # Image resolution at input/output. | |
in_channels, # Number of color channels at input. | |
out_channels, # Number of color channels at output. | |
emb_dim_in = 0, # Input embedding dim. | |
augment_dim = 0, # Augmentation label dimensionality, 0 = no augmentation. | |
model_channels = 128, # Base multiplier for the number of channels. | |
channel_mult = [1,2,2,2], # Per-resolution multipliers for the number of channels. | |
channel_mult_emb = 4, # Multiplier for the dimensionality of the embedding vector. | |
num_blocks = 4, # Number of residual blocks per resolution. | |
attn_resolutions = [16], # List of resolutions with self-attention. | |
dropout = 0.10, # Dropout probability of intermediate activations. | |
label_dropout = 0, # Dropout probability of class labels for classifier-free guidance. | |
embedding_type = 'positional', # Timestep embedding type: 'positional' for DDPM++, 'fourier' for NCSN++. | |
channel_mult_noise = 0, # Timestep embedding size: 1 for DDPM++, 2 for NCSN++. | |
encoder_type = 'standard', # Encoder architecture: 'standard' for DDPM++, 'residual' for NCSN++. | |
decoder_type = 'standard', # Decoder architecture: 'standard' for both DDPM++ and NCSN++. | |
resample_filter = [1,1], # Resampling filter: [1,1] for DDPM++, [1,3,3,1] for NCSN++. | |
): | |
assert embedding_type in ['fourier', 'positional'] | |
assert encoder_type in ['standard', 'skip', 'residual'] | |
assert decoder_type in ['standard', 'skip'] | |
super().__init__() | |
self.label_dropout = label_dropout | |
self.emb_dim_in = emb_dim_in | |
if emb_dim_in > 0: | |
emb_channels = model_channels * channel_mult_emb | |
else: | |
emb_channels = None | |
noise_channels = model_channels * channel_mult_noise | |
init = dict(init_mode='xavier_uniform') | |
init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5) | |
init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2)) | |
block_kwargs = dict( | |
emb_channels=emb_channels, num_heads=1, dropout=dropout, skip_scale=np.sqrt(0.5), eps=1e-6, | |
resample_filter=resample_filter, resample_proj=True, adaptive_scale=False, | |
init=init, init_zero=init_zero, init_attn=init_attn, | |
) | |
# Mapping. | |
# self.map_label = Linear(in_features=label_dim, out_features=noise_channels, **init) if label_dim else None | |
# self.map_augment = Linear(in_features=augment_dim, out_features=noise_channels, bias=False, **init) if augment_dim else None | |
# self.map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init) | |
# self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init) | |
if emb_dim_in > 0: | |
self.map_layer0 = Linear(in_features=emb_dim_in, out_features=emb_channels, **init) | |
self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init) | |
if noise_channels > 0: | |
self.noise_map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init) | |
self.noise_map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init) | |
# Encoder. | |
self.enc = torch.nn.ModuleDict() | |
cout = in_channels | |
caux = in_channels | |
for level, mult in enumerate(channel_mult): | |
res = img_resolution >> level | |
if level == 0: | |
cin = cout | |
cout = model_channels | |
self.enc[f'{res}x{res}_conv'] = Conv2d(in_channels=cin, out_channels=cout, kernel=3, **init) | |
else: | |
self.enc[f'{res}x{res}_down'] = UNetBlock(in_channels=cout, out_channels=cout, down=True, **block_kwargs) | |
if encoder_type == 'skip': | |
self.enc[f'{res}x{res}_aux_down'] = Conv2d(in_channels=caux, out_channels=caux, kernel=0, down=True, resample_filter=resample_filter) | |
self.enc[f'{res}x{res}_aux_skip'] = Conv2d(in_channels=caux, out_channels=cout, kernel=1, **init) | |
if encoder_type == 'residual': | |
self.enc[f'{res}x{res}_aux_residual'] = Conv2d(in_channels=caux, out_channels=cout, kernel=3, down=True, resample_filter=resample_filter, fused_resample=True, **init) | |
caux = cout | |
for idx in range(num_blocks): | |
cin = cout | |
cout = model_channels * mult | |
attn = (res in attn_resolutions) | |
self.enc[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs) | |
skips = [block.out_channels for name, block in self.enc.items() if 'aux' not in name] | |
# Decoder. | |
self.dec = torch.nn.ModuleDict() | |
for level, mult in reversed(list(enumerate(channel_mult))): | |
res = img_resolution >> level | |
if level == len(channel_mult) - 1: | |
self.dec[f'{res}x{res}_in0'] = UNetBlock(in_channels=cout, out_channels=cout, attention=True, **block_kwargs) | |
self.dec[f'{res}x{res}_in1'] = UNetBlock(in_channels=cout, out_channels=cout, **block_kwargs) | |
else: | |
self.dec[f'{res}x{res}_up'] = UNetBlock(in_channels=cout, out_channels=cout, up=True, **block_kwargs) | |
for idx in range(num_blocks + 1): | |
cin = cout + skips.pop() | |
cout = model_channels * mult | |
attn = (idx == num_blocks and res in attn_resolutions) | |
self.dec[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs) | |
if decoder_type == 'skip' or level == 0: | |
if decoder_type == 'skip' and level < len(channel_mult) - 1: | |
self.dec[f'{res}x{res}_aux_up'] = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=0, up=True, resample_filter=resample_filter) | |
self.dec[f'{res}x{res}_aux_norm'] = GroupNorm(num_channels=cout, eps=1e-6) | |
self.dec[f'{res}x{res}_aux_conv'] = Conv2d(in_channels=cout, out_channels=out_channels, kernel=3, init_weight=0.2, **init)# init_zero) | |
def forward(self, x, film_camera_emb=None, N_views_xa=1): | |
emb = None | |
if film_camera_emb is not None: | |
if self.emb_dim_in != 1: | |
film_camera_emb = film_camera_emb.reshape( | |
film_camera_emb.shape[0], 2, -1).flip(1).reshape(*film_camera_emb.shape) # swap sin/cos | |
film_camera_emb = silu(self.map_layer0(film_camera_emb)) | |
film_camera_emb = silu(self.map_layer1(film_camera_emb)) | |
emb = film_camera_emb | |
# Encoder. | |
skips = [] | |
aux = x | |
for name, block in self.enc.items(): | |
if 'aux_down' in name: | |
aux = block(aux, N_views_xa) | |
elif 'aux_skip' in name: | |
x = skips[-1] = x + block(aux, N_views_xa) | |
elif 'aux_residual' in name: | |
x = skips[-1] = aux = (x + block(aux, N_views_xa)) / np.sqrt(2) | |
else: | |
x = block(x, emb=emb, N_views_xa=N_views_xa) if isinstance(block, UNetBlock) \ | |
else block(x, N_views_xa=N_views_xa) | |
skips.append(x) | |
# Decoder. | |
aux = None | |
tmp = None | |
for name, block in self.dec.items(): | |
if 'aux_up' in name: | |
aux = block(aux, N_views_xa) | |
elif 'aux_norm' in name: | |
tmp = block(x, N_views_xa) | |
elif 'aux_conv' in name: | |
tmp = block(silu(tmp), N_views_xa) | |
aux = tmp if aux is None else tmp + aux | |
else: | |
if x.shape[1] != block.in_channels: | |
# skip connection is pixel-aligned which is good for | |
# foreground features | |
# but it's not good for gradient flow and background features | |
x = torch.cat([x, skips.pop()], dim=1) | |
x = block(x, emb=emb, N_views_xa=N_views_xa) | |
return aux | |
class SingleImageSongUNetPredictor(nn.Module): | |
def __init__(self, cfg, out_channels, bias, scale): | |
super(SingleImageSongUNetPredictor, self).__init__() | |
self.out_channels = out_channels | |
self.cfg = cfg | |
if cfg.cam_embd.embedding is None: | |
in_channels = 3 | |
emb_dim_in = 0 | |
else: | |
in_channels = 3 | |
emb_dim_in = 6 * cfg.cam_embd.dimension | |
self.encoder = SongUNet(cfg.data.training_resolution, | |
in_channels, | |
sum(out_channels), | |
model_channels=cfg.model.base_dim, | |
num_blocks=cfg.model.num_blocks, | |
emb_dim_in=emb_dim_in, | |
channel_mult_noise=0, | |
attn_resolutions=cfg.model.attention_resolutions) | |
self.out = nn.Conv2d(in_channels=sum(out_channels), | |
out_channels=sum(out_channels), | |
kernel_size=1) | |
start_channels = 0 | |
for out_channel, b, s in zip(out_channels, bias, scale): | |
nn.init.xavier_uniform_( | |
self.out.weight[start_channels:start_channels+out_channel, | |
:, :, :], s) | |
nn.init.constant_( | |
self.out.bias[start_channels:start_channels+out_channel], b) | |
start_channels += out_channel | |
def forward(self, x, film_camera_emb=None, N_views_xa=1): | |
x = self.encoder(x, | |
film_camera_emb=film_camera_emb, | |
N_views_xa=N_views_xa) | |
return self.out(x) | |
def networkCallBack(cfg, name, out_channels, **kwargs): | |
assert name == "SingleUNet" | |
return SingleImageSongUNetPredictor(cfg, out_channels, **kwargs) | |
class GaussianSplatPredictor(nn.Module): | |
def __init__(self, cfg): | |
super(GaussianSplatPredictor, self).__init__() | |
self.cfg = cfg | |
assert cfg.model.network_with_offset or cfg.model.network_without_offset, \ | |
"Need at least one network" | |
if cfg.model.network_with_offset: | |
split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(True, cfg) | |
self.network_with_offset = networkCallBack(cfg, | |
cfg.model.name, | |
split_dimensions, | |
scale = scale_inits, | |
bias = bias_inits) | |
assert not cfg.model.network_without_offset, "Can only have one network" | |
if cfg.model.network_without_offset: | |
split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(False, cfg) | |
self.network_wo_offset = networkCallBack(cfg, | |
cfg.model.name, | |
split_dimensions, | |
scale = scale_inits, | |
bias = bias_inits) | |
assert not cfg.model.network_with_offset, "Can only have one network" | |
self.init_ray_dirs() | |
# Activation functions for different parameters | |
self.depth_act = nn.Sigmoid() | |
self.scaling_activation = torch.exp | |
self.opacity_activation = torch.sigmoid | |
self.rotation_activation = torch.nn.functional.normalize | |
if self.cfg.model.max_sh_degree > 0: | |
self.init_sh_transform_matrices() | |
if self.cfg.cam_embd.embedding is not None: | |
if self.cfg.cam_embd.encode_embedding is None: | |
self.cam_embedding_map = nn.Identity() | |
elif self.cfg.cam_embd.encode_embedding == "positional": | |
self.cam_embedding_map = PositionalEmbedding(self.cfg.cam_embd.dimension) | |
def init_sh_transform_matrices(self): | |
v_to_sh_transform = torch.tensor([[ 0, 0,-1], | |
[-1, 0, 0], | |
[ 0, 1, 0]], dtype=torch.float32) | |
sh_to_v_transform = v_to_sh_transform.transpose(0, 1) | |
self.register_buffer('sh_to_v_transform', sh_to_v_transform.unsqueeze(0)) | |
self.register_buffer('v_to_sh_transform', v_to_sh_transform.unsqueeze(0)) | |
def init_ray_dirs(self): | |
x = torch.linspace(-self.cfg.data.training_resolution // 2 + 0.5, | |
self.cfg.data.training_resolution // 2 - 0.5, | |
self.cfg.data.training_resolution) | |
y = torch.linspace( self.cfg.data.training_resolution // 2 - 0.5, | |
-self.cfg.data.training_resolution // 2 + 0.5, | |
self.cfg.data.training_resolution) | |
if self.cfg.model.inverted_x: | |
x = -x | |
if self.cfg.model.inverted_y: | |
y = -y | |
grid_x, grid_y = torch.meshgrid(x, y, indexing='xy') | |
ones = torch.ones_like(grid_x, dtype=grid_x.dtype) | |
ray_dirs = torch.stack([grid_x, grid_y, ones]).unsqueeze(0) | |
# for cars and chairs the focal length is fixed across dataset | |
# so we can preprocess it | |
# for co3d this is done on the fly | |
if self.cfg.data.category not in ["hydrants", "teddybears"]: | |
ray_dirs[:, :2, ...] /= fov2focal(self.cfg.data.fov * np.pi / 180, | |
self.cfg.data.training_resolution) | |
self.register_buffer('ray_dirs', ray_dirs) | |
def get_splits_and_inits(self, with_offset, cfg): | |
# Gets channel split dimensions and last layer initialisation | |
split_dimensions = [] | |
scale_inits = [] | |
bias_inits = [] | |
if with_offset: | |
split_dimensions = split_dimensions + [1, 3, 1, 3, 4, 3] | |
scale_inits = scale_inits + [cfg.model.depth_scale, | |
cfg.model.xyz_scale, | |
cfg.model.opacity_scale, | |
cfg.model.scale_scale, | |
1.0, | |
5.0] | |
bias_inits = [cfg.model.depth_bias, | |
cfg.model.xyz_bias, | |
cfg.model.opacity_bias, | |
np.log(cfg.model.scale_bias), | |
0.0, | |
0.0] | |
else: | |
split_dimensions = split_dimensions + [1, 1, 3, 4, 3] | |
scale_inits = scale_inits + [cfg.model.depth_scale, | |
cfg.model.opacity_scale, | |
cfg.model.scale_scale, | |
1.0, | |
5.0] | |
bias_inits = bias_inits + [cfg.model.depth_bias, | |
cfg.model.opacity_bias, | |
np.log(cfg.model.scale_bias), | |
0.0, | |
0.0] | |
if cfg.model.max_sh_degree != 0: | |
sh_num = (self.cfg.model.max_sh_degree + 1) ** 2 - 1 | |
sh_num_rgb = sh_num * 3 | |
split_dimensions.append(sh_num_rgb) | |
scale_inits.append(0.0) | |
bias_inits.append(0.0) | |
if with_offset: | |
self.split_dimensions_with_offset = split_dimensions | |
else: | |
self.split_dimensions_without_offset = split_dimensions | |
return split_dimensions, scale_inits, bias_inits | |
def flatten_vector(self, x): | |
# Gets rid of the image dimensions and flattens to a point list | |
# B x C x H x W -> B x C x N -> B x N x C | |
return x.reshape(x.shape[0], x.shape[1], -1).permute(0, 2, 1) | |
def make_contiguous(self, tensor_dict): | |
return {k: v.contiguous() for k, v in tensor_dict.items()} | |
def multi_view_union(self, tensor_dict, B, N_view): | |
for t_name, t in tensor_dict.items(): | |
t = t.reshape(B, N_view, *t.shape[1:]) | |
tensor_dict[t_name] = t.reshape(B, N_view * t.shape[2], *t.shape[3:]) | |
return tensor_dict | |
def get_camera_embeddings(self, cameras): | |
# get embedding | |
# pass through encoding | |
b, n_view = cameras.shape[:2] | |
if self.cfg.cam_embd.embedding == "index": | |
cam_embedding = torch.arange(n_view, | |
dtype=cameras.dtype, | |
device=cameras.device, | |
).unsqueeze(0).expand(b, n_view).unsqueeze(2) | |
if self.cfg.cam_embd.embedding == "pose": | |
# concatenate origin and z-vector. cameras are in row-major order | |
cam_embedding = torch.cat([cameras[:, :, 3, :3], cameras[:, :, 2, :3]], dim=2) | |
cam_embedding = rearrange(cam_embedding, 'b n_view c -> (b n_view) c') | |
cam_embedding = self.cam_embedding_map(cam_embedding) | |
cam_embedding = rearrange(cam_embedding, '(b n_view) c -> b n_view c', b=b, n_view=n_view) | |
return cam_embedding | |
def transform_SHs(self, shs, source_cameras_to_world): | |
# shs: B x N x SH_num x 3 | |
# source_cameras_to_world: B 4 4 | |
assert shs.shape[2] == 3, "Can only process shs order 1" | |
shs = rearrange(shs, 'b n sh_num rgb -> b (n rgb) sh_num') | |
transforms = torch.bmm( | |
self.sh_to_v_transform.expand(source_cameras_to_world.shape[0], 3, 3), | |
# transpose is because source_cameras_to_world is | |
# in row major order | |
source_cameras_to_world[:, :3, :3]) | |
transforms = torch.bmm(transforms, | |
self.v_to_sh_transform.expand(source_cameras_to_world.shape[0], 3, 3)) | |
shs_transformed = torch.bmm(shs, transforms) | |
shs_transformed = rearrange(shs_transformed, 'b (n rgb) sh_num -> b n sh_num rgb', rgb=3) | |
return shs_transformed | |
def transform_rotations(self, rotations, source_cv2wT_quat): | |
""" | |
Applies a transform that rotates the predicted rotations from | |
camera space to world space. | |
Args: | |
rotations: predicted in-camera rotation quaternions (B x N x 4) | |
source_cameras_to_world: transformation quaternions from | |
camera-to-world matrices transposed(B x 4) | |
Retures: | |
rotations with appropriately applied transform to world space | |
""" | |
Mq = source_cv2wT_quat.unsqueeze(1).expand(*rotations.shape) | |
rotations = quaternion_raw_multiply(Mq, rotations) | |
return rotations | |
def get_pos_from_network_output(self, depth_network, offset, focals_pixels, const_offset=None): | |
# expands ray dirs along the batch dimension | |
# adjust ray directions according to fov if not done already | |
ray_dirs_xy = self.ray_dirs.expand(depth_network.shape[0], 3, *self.ray_dirs.shape[2:]) | |
if self.cfg.data.category in ["hydrants", "teddybears"]: | |
assert torch.all(focals_pixels > 0) | |
ray_dirs_xy = ray_dirs_xy.clone() | |
ray_dirs_xy[:, :2, ...] = ray_dirs_xy[:, :2, ...] / focals_pixels.unsqueeze(2).unsqueeze(3) | |
# depth and offsets are shaped as (b 3 h w) | |
if const_offset is not None: | |
depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear + const_offset | |
else: | |
depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear | |
pos = ray_dirs_xy * depth + offset | |
return pos | |
def forward(self, x, | |
source_cameras_view_to_world, | |
source_cv2wT_quat=None, | |
focals_pixels=None, | |
activate_output=True): | |
B = x.shape[0] | |
N_views = x.shape[1] | |
# UNet attention will reshape outputs so that there is cross-view attention | |
if self.cfg.model.cross_view_attention: | |
N_views_xa = N_views | |
else: | |
N_views_xa = 1 | |
if self.cfg.cam_embd.embedding is not None: | |
cam_embedding = self.get_camera_embeddings(source_cameras_view_to_world) | |
assert self.cfg.cam_embd.method == "film" | |
film_camera_emb = cam_embedding.reshape(B*N_views, cam_embedding.shape[2]) | |
else: | |
film_camera_emb = None | |
if self.cfg.data.category in ["hydrants", "teddybears"]: | |
assert focals_pixels is not None | |
focals_pixels = focals_pixels.reshape(B*N_views, *focals_pixels.shape[2:]) | |
else: | |
assert focals_pixels is None, "Unexpected argument for non-co3d dataset" | |
x = x.reshape(B*N_views, *x.shape[2:]) | |
if self.cfg.data.origin_distances: | |
const_offset = x[:, 3:, ...] | |
x = x[:, :3, ...] | |
else: | |
const_offset = None | |
source_cameras_view_to_world = source_cameras_view_to_world.reshape(B*N_views, *source_cameras_view_to_world.shape[2:]) | |
x = x.contiguous(memory_format=torch.channels_last) | |
if self.cfg.model.network_with_offset: | |
split_network_outputs = self.network_with_offset(x, | |
film_camera_emb=film_camera_emb, | |
N_views_xa=N_views_xa | |
) | |
split_network_outputs = split_network_outputs.split(self.split_dimensions_with_offset, dim=1) | |
depth, offset, opacity, scaling, rotation, features_dc = split_network_outputs[:6] | |
if self.cfg.model.max_sh_degree > 0: | |
features_rest = split_network_outputs[6] | |
pos = self.get_pos_from_network_output(depth, offset, focals_pixels, const_offset=const_offset) | |
else: | |
split_network_outputs = self.network_wo_offset(x, | |
film_camera_emb=film_camera_emb, | |
N_views_xa=N_views_xa | |
).split(self.split_dimensions_without_offset, dim=1) | |
depth, opacity, scaling, rotation, features_dc = split_network_outputs[:5] | |
if self.cfg.model.max_sh_degree > 0: | |
features_rest = split_network_outputs[5] | |
pos = self.get_pos_from_network_output(depth, 0.0, focals_pixels, const_offset=const_offset) | |
if self.cfg.model.isotropic: | |
scaling_out = torch.cat([scaling[:, :1, ...], scaling[:, :1, ...], scaling[:, :1, ...]], dim=1) | |
else: | |
scaling_out = scaling | |
# Pos prediction is in camera space - compute the positions in the world space | |
pos = self.flatten_vector(pos) | |
pos = torch.cat([pos, | |
torch.ones((pos.shape[0], pos.shape[1], 1), | |
device=pos.device, dtype=torch.float32) | |
], dim=2) | |
pos = torch.bmm(pos, source_cameras_view_to_world) | |
pos = pos[:, :, :3] / (pos[:, :, 3:] + 1e-10) | |
out_dict = { | |
"xyz": pos, | |
"rotation": self.flatten_vector(self.rotation_activation(rotation)), | |
"features_dc": self.flatten_vector(features_dc).unsqueeze(2) | |
} | |
if activate_output: | |
out_dict["opacity"] = self.flatten_vector(self.opacity_activation(opacity)) | |
out_dict["scaling"] = self.flatten_vector(self.scaling_activation(scaling_out)) | |
else: | |
out_dict["opacity"] = self.flatten_vector(opacity) | |
out_dict["scaling"] = self.flatten_vector(scaling_out) | |
assert source_cv2wT_quat is not None | |
source_cv2wT_quat = source_cv2wT_quat.reshape(B*N_views, *source_cv2wT_quat.shape[2:]) | |
out_dict["rotation"] = self.transform_rotations(out_dict["rotation"], | |
source_cv2wT_quat=source_cv2wT_quat) | |
if self.cfg.model.max_sh_degree > 0: | |
features_rest = self.flatten_vector(features_rest) | |
# Channel dimension holds SH_num * RGB(3) -> renderer expects split across RGB | |
# Split channel dimension B x N x C -> B x N x SH_num x 3 | |
out_dict["features_rest"] = features_rest.reshape(*features_rest.shape[:2], -1, 3) | |
assert self.cfg.model.max_sh_degree == 1 # "Only accepting degree 1" | |
out_dict["features_rest"] = self.transform_SHs(out_dict["features_rest"], | |
source_cameras_view_to_world) | |
else: | |
out_dict["features_rest"] = torch.zeros((out_dict["features_dc"].shape[0], | |
out_dict["features_dc"].shape[1], | |
(self.cfg.model.max_sh_degree + 1) ** 2 - 1, | |
3), dtype=out_dict["features_dc"].dtype, | |
device=out_dict["xyz"].device) | |
out_dict = self.multi_view_union(out_dict, B, N_views) | |
out_dict = self.make_contiguous(out_dict) | |
return out_dict |