Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchvision | |
import numpy as np | |
import os | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import spaces | |
from utils.app_utils import ( | |
remove_background, | |
resize_foreground, | |
set_white_background, | |
resize_to_128, | |
to_tensor, | |
get_source_camera_v2w_rmo_and_quats, | |
get_target_cameras, | |
export_to_obj) | |
import imageio | |
from scene.gaussian_predictor import GaussianSplatPredictor | |
from gaussian_renderer import render_predicted | |
import gradio as gr | |
import rembg | |
from huggingface_hub import hf_hub_download | |
def main(): | |
os.system("sudo find /usr -name nvcc") | |
if torch.cuda.is_available(): | |
device = "cuda:0" | |
print("Found cuda") | |
else: | |
device = "cpu" | |
model_cfg = OmegaConf.load( | |
os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
"config.yaml" | |
)) | |
model_path = hf_hub_download(repo_id="szymanowiczs/splatter-image-multi-category-v1", | |
filename="model_latest.pth") | |
model = GaussianSplatPredictor(model_cfg) | |
ckpt_loaded = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(ckpt_loaded["model_state_dict"]) | |
model.to(device) | |
# ============= image preprocessing ============= | |
rembg_session = rembg.new_session() | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def preprocess(input_image, preprocess_background=True, foreground_ratio=0.65): | |
# 0.7 seems to be a reasonable foreground ratio | |
if preprocess_background: | |
image = input_image.convert("RGB") | |
image = remove_background(image, rembg_session) | |
image = resize_foreground(image, foreground_ratio) | |
image = set_white_background(image) | |
else: | |
image = input_image | |
if image.mode == "RGBA": | |
image = set_white_background(image) | |
image = resize_to_128(image) | |
return image | |
ply_out_path = f'./mesh.ply' | |
def reconstruct_and_export(image): | |
""" | |
Passes image through model, outputs reconstruction in form of a dict of tensors. | |
""" | |
image = to_tensor(image).to(device) | |
view_to_world_source, rot_transform_quats = get_source_camera_v2w_rmo_and_quats() | |
view_to_world_source = view_to_world_source.to(device) | |
rot_transform_quats = rot_transform_quats.to(device) | |
reconstruction_unactivated = model( | |
image.unsqueeze(0).unsqueeze(0), | |
view_to_world_source, | |
rot_transform_quats, | |
None, | |
activate_output=False) | |
reconstruction = {k: v[0].contiguous() for k, v in reconstruction_unactivated.items()} | |
reconstruction["scaling"] = model.scaling_activation(reconstruction["scaling"]) | |
reconstruction["opacity"] = model.opacity_activation(reconstruction["opacity"]) | |
# render images in a loop | |
world_view_transforms, full_proj_transforms, camera_centers = get_target_cameras() | |
background = torch.tensor([1, 1, 1] , dtype=torch.float32, device=device) | |
loop_renders = [] | |
t_to_512 = torchvision.transforms.Resize(512, interpolation=torchvision.transforms.InterpolationMode.NEAREST) | |
for r_idx in range( world_view_transforms.shape[0]): | |
image = render_predicted(reconstruction, | |
world_view_transforms[r_idx].to(device), | |
full_proj_transforms[r_idx].to(device), | |
camera_centers[r_idx].to(device), | |
background, | |
model_cfg, | |
focals_pixels=None)["render"] | |
image = t_to_512(image) | |
loop_renders.append(torch.clamp(image * 255, 0.0, 255.0).detach().permute(1, 2, 0).cpu().numpy().astype(np.uint8)) | |
loop_out_path = os.path.join(os.path.dirname(ply_out_path), "loop.mp4") | |
imageio.mimsave(loop_out_path, loop_renders, fps=25) | |
# export reconstruction to ply | |
export_to_obj(reconstruction_unactivated, ply_out_path) | |
return ply_out_path, loop_out_path | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Splatter Image Demo | |
[Splatter Image](https://github.com/szymanowiczs/splatter-image) (CVPR 2024) is a fast, super cheap to train method for object 3D reconstruction from a single image. | |
The model used in the demo was trained on **Objaverse-LVIS on 2 A6000 GPUs for 3.5 days**. | |
On NVIDIA V100 GPU, reconstruction can be done at 38FPS and rendering at 588FPS. | |
Upload an image of an object to see how the Splatter Image does. | |
**Comments:** | |
1. The first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s. | |
2. The model does not work well on photos of humans. | |
3. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. Artefacts might show - see video for more faithful results. | |
4. Best results are achieved on the datasets described in the [repository](https://github.com/szymanowiczs/splatter-image) using that code. This demo is experimental. | |
5. Our model might not be better than some state-of-the-art methods, but it is of comparable quality and is **much** cheaper to train and run. | |
""" | |
) | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image( | |
label="Input Image", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
elem_id="content_image", | |
) | |
processed_image = gr.Image(label="Processed Image", interactive=False) | |
with gr.Row(): | |
with gr.Group(): | |
preprocess_background = gr.Checkbox( | |
label="Remove Background", value=True | |
) | |
with gr.Row(): | |
submit = gr.Button("Generate", elem_id="generate", variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Tab("Reconstruction"): | |
with gr.Column(): | |
output_video = gr.Video(value=None, width=512, label="Rendered Video", autoplay=True) | |
output_model = gr.Model3D( | |
height=512, | |
label="Output Model", | |
interactive=False | |
) | |
submit.click(fn=check_input_image, inputs=[input_image]).success( | |
fn=preprocess, | |
inputs=[input_image, preprocess_background], | |
outputs=[processed_image], | |
).success( | |
fn=reconstruct_and_export, | |
inputs=[processed_image], | |
outputs=[output_model, output_video], | |
) | |
demo.queue(max_size=1) | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |
# gradio app interface | |