File size: 1,524 Bytes
af9db04 35d7008 af9db04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from sentence_transformers import SentenceTransformer
import numpy as np
# Download from the 🤗 Hub
model = SentenceTransformer("syubraj/sentence_similarity_nepali_v2")
def calculate_similarity(sentence1, sentence2):
# Encode the sentences
embeddings = model.encode([sentence1, sentence2])
# Calculate cosine similarity
similarity = np.dot(embeddings[0], embeddings[1]) / (np.linalg.norm(embeddings[0]) * np.linalg.norm(embeddings[1]))
return f"समानता स्कोर: {similarity:.4f}"
# Define example inputs
examples = [
["रातो, डबल डेकर बस।", "रातो डबल डेकर बस।"],
["दुई कालो कुकुर हिउँमा हिंड्दै।", "तीन सेतो बिरालो घाँसमा बसिरहेको।"],
["आज मौसम सफा र घाम लागेको छ।", "आकाश निलो र घाम चम्किलो छ।"],
]
# Create Gradio interface
iface = gr.Interface(
fn=calculate_similarity,
inputs=[
gr.Textbox(label="Enter the first sentence:"),
gr.Textbox(label="Enter the sentence to compare:")
],
outputs=gr.Textbox(label="Result"),
title="Nepali Sentence Similarity Calculator",
description="Compare the similarity between two Nepali sentences using the syubraj/sentence_similarity_nepali_v2 model.",
examples=examples
)
# Launch the interface
iface.launch() |