Spaces:
Runtime error
Runtime error
File size: 27,197 Bytes
01dff0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
import os
import torch
import numpy as np
import gradio as gr
from random import sample
from detoxify import Detoxify
from datasets import load_dataset
from huggingface_hub import HfApi, ModelFilter, ModelSearchArguments
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM
from transformers import BloomTokenizerFast, BloomForCausalLM
HF_AUTH_TOKEN = os.environ.get('hf_token' or True)
DATASET = "allenai/real-toxicity-prompts"
CHECKPOINTS = {
"DistilGPT2 by HuggingFace 🤗" : "distilgpt2",
"GPT-Neo 125M by EleutherAI 🤖" : "EleutherAI/gpt-neo-125M",
"BLOOM 560M by BigScience 🌸" : "bigscience/bloom-560m",
"Custom Model" : None
}
MODEL_CLASSES = {
"DistilGPT2 by HuggingFace 🤗" : (GPT2LMHeadModel, GPT2Tokenizer),
"GPT-Neo 125M by EleutherAI 🤖" : (GPTNeoForCausalLM, GPT2Tokenizer),
"BLOOM 560M by BigScience 🌸" : (BloomForCausalLM, BloomTokenizerFast),
"Custom Model" : (AutoModelForCausalLM, AutoTokenizer),
}
CHOICES = sorted(list(CHECKPOINTS.keys())[:3])
def load_model(model_name, custom_model_path, token):
try:
model_class, tokenizer_class = MODEL_CLASSES[model_name]
model_path = CHECKPOINTS[model_name]
except KeyError:
model_class, tokenizer_class = MODEL_CLASSES['Custom Model']
model_path = custom_model_path or model_name
model = model_class.from_pretrained(model_path, use_auth_token=token)
tokenizer = tokenizer_class.from_pretrained(model_path, use_auth_token=token)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model.eval()
return model, tokenizer
MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop
def set_seed(seed, n_gpu):
np.random.seed(seed)
torch.manual_seed(seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(seed)
def adjust_length_to_model(length, max_sequence_length):
if length < 0 and max_sequence_length > 0:
length = max_sequence_length
elif 0 < max_sequence_length < length:
length = max_sequence_length # No generation bigger than model size
elif length < 0:
length = MAX_LENGTH # avoid infinite loop
return length
def generate(model_name,
token,
custom_model_path,
input_sentence,
length = 75,
temperature = 0.7,
top_k = 50,
top_p = 0.95,
seed = 42,
no_cuda = False,
num_return_sequences = 1,
stop_token = '.'
):
# load device
#if not no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not no_cuda else "cpu")
n_gpu = 0 if no_cuda else torch.cuda.device_count()
# Set seed
set_seed(seed, n_gpu)
# Load model
model, tokenizer = load_model(model_name, custom_model_path, token)
model.to(device)
#length = adjust_length_to_model(length, max_sequence_length=model.config.max_position_embeddings)
# Tokenize input
encoded_prompt = tokenizer.encode(input_sentence,
add_special_tokens=False,
return_tensors='pt')
encoded_prompt = encoded_prompt.to(device)
input_ids = encoded_prompt
# Generate output
output_sequences = model.generate(input_ids=input_ids,
max_length=length + len(encoded_prompt[0]),
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=True,
num_return_sequences=num_return_sequences
)
generated_sequences = list()
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
generated_sequence = generated_sequence.tolist()
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
#remove prompt
text = text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
#remove all text after last occurence of stop_token
text = text[:text.rfind(stop_token)+1]
generated_sequences.append(text)
return generated_sequences[0]
def show_mode(mode):
if mode == 'Single Model':
return (
gr.update(visible=True),
gr.update(visible=False)
)
if mode == 'Multi-Model':
return (
gr.update(visible=False),
gr.update(visible=True)
)
def prepare_dataset(dataset):
dataset = load_dataset(dataset, split='train')
return dataset
def load_prompts(dataset):
prompts = [dataset[i]['prompt']['text'] for i in range(len(dataset))]
return prompts
def random_sample(prompt_list):
random_sample = sample(prompt_list,10)
return random_sample
def show_dataset(dataset):
raw_data = prepare_dataset(dataset)
prompts = load_prompts(raw_data)
return (gr.update(choices=random_sample(prompts),
label='You can find below a random subset from the RealToxicityPrompts dataset',
visible=True),
gr.update(visible=True),
prompts,
)
def update_dropdown(prompts):
return gr.update(choices=random_sample(prompts))
def show_search_bar(value):
if value == 'Custom Model':
return (value,
gr.update(visible=True)
)
else:
return (value,
gr.update(visible=False)
)
def search_model(model_name, token):
api = HfApi()
model_args = ModelSearchArguments()
filt = ModelFilter(
task=model_args.pipeline_tag.TextGeneration,
library=model_args.library.PyTorch)
results = api.list_models(filter=filt, search=model_name, use_auth_token=token)
model_list = [model.modelId for model in results]
return gr.update(visible=True,
choices=model_list,
label='Choose the model',
)
def show_api_key_textbox(checkbox):
if checkbox:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def forward_model_choice(model_choice_path):
return (model_choice_path,
model_choice_path)
def auto_complete(input, generated):
output = input + ' ' + generated
output_spans = [{'entity': 'OUTPUT', 'start': len(input), 'end': len(output)}]
completed_prompt = {"text": output, "entities": output_spans}
return completed_prompt
def process_user_input(model,
token,
custom_model_path,
input,
length,
temperature,
top_p,
top_k):
warning = 'Please enter a valid prompt.'
if input == None:
generated = warning
else:
generated = generate(model_name=model,
token=token,
custom_model_path=custom_model_path,
input_sentence=input,
length=length,
temperature=temperature,
top_p=top_p,
top_k=top_k)
generated_with_spans = auto_complete(input=input, generated=generated)
return (
gr.update(value=generated_with_spans),
gr.update(visible=True),
gr.update(visible=True),
input,
generated
)
def pass_to_textbox(input):
return gr.update(value=input)
def run_detoxify(text):
results = Detoxify('original').predict(text)
json_ready_results = {cat:float(score) for (cat,score) in results.items()}
return json_ready_results
def compute_toxi_output(output_text):
scores = run_detoxify(output_text)
return (
gr.update(value=scores, visible=True),
gr.update(visible=True)
)
def compute_change(input, output):
change_percent = round(((float(output)-input)/input)*100, 2)
return change_percent
def compare_toxi_scores(input_text, output_scores):
input_scores = run_detoxify(input_text)
json_ready_results = {cat:float(score) for (cat,score) in input_scores.items()}
compare_scores = {
cat:compute_change(json_ready_results[cat], output_scores[cat])
for cat in json_ready_results
for cat in output_scores
}
return (
gr.update(value=json_ready_results, visible=True),
gr.update(value=compare_scores, visible=True)
)
def show_flag_choices():
return gr.update(visible=True)
def update_flag(flag_value):
return (flag_value,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False)
)
def upload_flag(*args):
if flagging_callback.flag(list(args), flag_option = None):
return gr.update(visible=True)
def forward_model_choice_multi(model_choice_path):
CHOICES.append(model_choice_path)
return gr.update(choices = CHOICES)
def process_user_input_multi(models,
input,
token,
length,
temperature,
top_p,
top_k):
warning = 'Please enter a valid prompt.'
if input == None:
generated = warning
else:
generated_dict= {model:generate(model_name=model,
token=token,
custom_model_path=None,
input_sentence=input,
length=length,
temperature=temperature,
top_p=top_p,
top_k=top_k) for model in sorted(models)}
generated_with_spans_dict = {model:auto_complete(input, generated) for model,generated in generated_dict.items()}
update_outputs = [gr.HighlightedText.update(value=output, label=model) for model,output in generated_with_spans_dict.items()]
update_hide = [gr.HighlightedText.update(visible=False) for i in range(10-len(models))]
return update_outputs + update_hide
def show_choices_multi(models):
update_show = [gr.HighlightedText.update(visible=True) for model in sorted(models)]
update_hide = [gr.HighlightedText.update(visible=False,value=None, label=None) for i in range(10-len(models))]
return update_show + update_hide
def show_params(checkbox):
if checkbox == True:
return gr.update(visible=True)
else:
return gr.update(visible=False)
CSS = """
#inside_group {
padding-top: 0.6em;
padding-bottom: 0.6em;
}
#pw textarea {
-webkit-text-security: disc;
}
"""
with gr.Blocks(css=CSS) as demo:
dataset = gr.Variable(value=DATASET)
prompts_var = gr.Variable(value=None)
input_var = gr.Variable(label="Input Prompt", value=None)
output_var = gr.Variable(label="Output",value=None)
model_choice = gr.Variable(label="Model", value=None)
custom_model_path = gr.Variable(value=None)
flag_choice = gr.Variable(label = "Flag", value=None)
flagging_callback = gr.HuggingFaceDatasetSaver(hf_token = HF_AUTH_TOKEN,
dataset_name = "fsdlredteam/flagged_2",
organization = "fsdlredteam",
private = True )
gr.Markdown("<p align='center'><img src='https://i.imgur.com/ZxbbLUQ.png>'/></p>")
gr.Markdown("<h1 align='center'>BuggingSpace</h1>")
gr.Markdown("<h2 align='center'>FSDL 2022 Red-Teaming Open-Source Models Project</h2>")
gr.Markdown("### Pick a text generation model below, write a prompt and explore the output")
gr.Markdown("### Or compare the output of multiple models at the same time")
choose_mode = gr.Radio(choices=['Single Model', "Multi-Model"],
value='Single Model',
interactive=True,
visible=True,
show_label=False)
with gr.Group() as single_model:
gr.Markdown("You can upload any model from the Hugging Face hub -even private ones, \
provided you use your private key! "
"Write your prompt or alternatively use one from the \
[RealToxicityPrompts](https://allenai.org/data/real-toxicity-prompts) dataset.")
gr.Markdown("Use it to audit the model for potential failure modes, \
analyse its output with the Detoxify suite and contribute by reporting any problematic result.")
gr.Markdown("Beware ! Generation can take up to a few minutes with very large models.")
with gr.Row():
with gr.Column(scale=1): # input & prompts dataset exploration
gr.Markdown("### 1. Select a prompt", elem_id="inside_group")
input_text = gr.Textbox(label="Write your prompt below.",
interactive=True,
lines=4,
elem_id="inside_group")
gr.Markdown("— or —", elem_id="inside_group")
inspo_button = gr.Button('Click here if you need some inspiration', elem_id="inside_group")
prompts_drop = gr.Dropdown(visible=False, elem_id="inside_group")
randomize_button = gr.Button('Show another subset', visible=False, elem_id="inside_group")
show_params_checkbox_single = gr.Checkbox(label='Set custom params',
interactive=True,
value=False)
with gr.Box(visible=False) as params_box_single:
length_single = gr.Slider(label='Output length',
visible=True,
interactive=True,
minimum=50,
maximum=200,
value=75)
top_k_single = gr.Slider(label='top_k',
visible=True,
interactive=True,
minimum=1,
maximum=100,
value=50)
top_p_single = gr.Slider(label='top_p',
visible=True,
interactive=True,
minimum=0.1,
maximum=1,
value=0.95)
temperature_single = gr.Slider(label='temperature',
visible=True,
interactive=True,
minimum=0.1,
maximum=1,
value=0.7)
with gr.Column(scale=1): # Model choice & output
gr.Markdown("### 2. Evaluate output")
model_radio = gr.Radio(choices=list(CHECKPOINTS.keys()),
label='Model',
interactive=True,
elem_id="inside_group")
search_bar = gr.Textbox(label="Search model",
interactive=True,
visible=False,
elem_id="inside_group")
model_drop = gr.Dropdown(visible=False)
private_checkbox = gr.Checkbox(visible=True,label="Private Model ?", elem_id="inside_group")
api_key_textbox = gr.Textbox(label="Enter your AUTH TOKEN below",
value=None,
interactive=True,
visible=False,
elem_id="pw")
generate_button = gr.Button('Submit your prompt', elem_id="inside_group")
output_spans = gr.HighlightedText(visible=True, label="Generated text")
flag_button = gr.Button("Report output here", visible=False, elem_id="inside_group")
with gr.Row(): # Flagging
with gr.Column(scale=1):
flag_radio = gr.Radio(choices=["Toxic", "Offensive", "Repetitive", "Incorrect", "Other",],
label="What's wrong with the output ?",
interactive=True,
visible=False,
elem_id="inside_group")
user_comment = gr.Textbox(label="(Optional) Briefly describe the issue",
visible=False,
interactive=True,
elem_id="inside_group")
confirm_flag_button = gr.Button("Confirm report", visible=False, elem_id="inside_group")
with gr.Row(): # Flagging success
success_message = gr.Markdown("Your report has been successfully registered. Thank you!",
visible=False,
elem_id="inside_group")
with gr.Row(): # Toxicity buttons
toxi_button = gr.Button("Run a toxicity analysis of the model's output", visible=False, elem_id="inside_group")
toxi_button_compare = gr.Button("Compare toxicity on input and output", visible=False, elem_id="inside_group")
with gr.Row(): # Toxicity scores
toxi_scores_input = gr.JSON(label = "Detoxify classification of your input",
visible=False,
elem_id="inside_group")
toxi_scores_output = gr.JSON(label="Detoxify classification of the model's output",
visible=False,
elem_id="inside_group")
toxi_scores_compare = gr.JSON(label = "Percentage change between Input and Output",
visible=False,
elem_id="inside_group")
with gr.Group(visible=False) as multi_model:
model_list = list()
gr.Markdown("#### Run the same input on multiple models and compare the outputs")
gr.Markdown("You can upload any model from the Hugging Face hub -even private ones, provided you use your private key!")
gr.Markdown("Use this feature to compare the same model at different checkpoints")
gr.Markdown('Or to benchmark your model against another one as a reference.')
gr.Markdown("Beware ! Generation can take up to a few minutes with very large models.")
with gr.Row(elem_id="inside_group"):
with gr.Column():
models_multi = gr.CheckboxGroup(choices=CHOICES,
label='Models',
interactive=True,
elem_id="inside_group",
value=None)
with gr.Column():
generate_button_multi = gr.Button('Submit your prompt',elem_id="inside_group")
show_params_checkbox_multi = gr.Checkbox(label='Set custom params',
interactive=True,
value=False)
with gr.Box(visible=False) as params_box_multi:
length_multi = gr.Slider(label='Output length',
visible=True,
interactive=True,
minimum=50,
maximum=200,
value=75)
top_k_multi = gr.Slider(label='top_k',
visible=True,
interactive=True,
minimum=1,
maximum=100,
value=50)
top_p_multi = gr.Slider(label='top_p',
visible=True,
interactive=True,
minimum=0.1,
maximum=1,
value=0.95)
temperature_multi = gr.Slider(label='temperature',
visible=True,
interactive=True,
minimum=0.1,
maximum=1,
value=0.7)
with gr.Row(elem_id="inside_group"):
with gr.Column(elem_id="inside_group", scale=1):
input_text_multi = gr.Textbox(label="Write your prompt below.",
interactive=True,
lines=4,
elem_id="inside_group")
with gr.Column(elem_id="inside_group", scale=1):
search_bar_multi = gr.Textbox(label="Search another model",
interactive=True,
visible=True,
elem_id="inside_group")
model_drop_multi = gr.Dropdown(visible=False,
show_progress=True,
elem_id="inside_group")
private_checkbox_multi = gr.Checkbox(visible=True,label="Private Model ?")
api_key_textbox_multi = gr.Textbox(label="Enter your AUTH TOKEN below",
value=None,
interactive=True,
visible=False,
elem_id="pw")
with gr.Row() as outputs_row:
for i in range(10):
output_spans_multi = gr.HighlightedText(visible=False, elem_id="inside_group")
model_list.append(output_spans_multi)
with gr.Row():
gr.Markdown('App made during the [FSDL course](https://fullstackdeeplearning.com) \
by Team53: Jean-Antoine, Sajenthan, Sashank, Kemp, Srihari, Astitwa')
# Single Model
choose_mode.change(fn=show_mode,
inputs=choose_mode,
outputs=[single_model, multi_model])
inspo_button.click(fn=show_dataset,
inputs=dataset,
outputs=[prompts_drop, randomize_button, prompts_var])
prompts_drop.change(fn=pass_to_textbox,
inputs=prompts_drop,
outputs=input_text)
randomize_button.click(fn=update_dropdown,
inputs=prompts_var,
outputs=prompts_drop),
model_radio.change(fn=show_search_bar,
inputs=model_radio,
outputs=[model_choice,search_bar])
search_bar.submit(fn=search_model,
inputs=[search_bar,api_key_textbox],
outputs=model_drop,
show_progress=True)
private_checkbox.change(fn=show_api_key_textbox,
inputs=private_checkbox,
outputs=api_key_textbox)
model_drop.change(fn=forward_model_choice,
inputs=model_drop,
outputs=[model_choice,custom_model_path])
generate_button.click(fn=process_user_input,
inputs=[model_choice,
api_key_textbox,
custom_model_path,
input_text,
length_single,
temperature_single,
top_p_single,
top_k_single],
outputs=[output_spans,
toxi_button,
flag_button,
input_var,
output_var],
show_progress=True)
toxi_button.click(fn=compute_toxi_output,
inputs=output_var,
outputs=[toxi_scores_output, toxi_button_compare],
show_progress=True)
toxi_button_compare.click(fn=compare_toxi_scores,
inputs=[input_text, toxi_scores_output],
outputs=[toxi_scores_input, toxi_scores_compare],
show_progress=True)
flag_button.click(fn=show_flag_choices,
inputs=None,
outputs=flag_radio)
flag_radio.change(fn=update_flag,
inputs=flag_radio,
outputs=[flag_choice, confirm_flag_button, user_comment, flag_button])
flagging_callback.setup([input_var, output_var, model_choice, user_comment, flag_choice], "flagged_data_points")
confirm_flag_button.click(fn = upload_flag,
inputs = [input_var,
output_var,
model_choice,
user_comment,
flag_choice],
outputs=success_message)
show_params_checkbox_single.change(fn=show_params,
inputs=show_params_checkbox_single,
outputs=params_box_single)
# Model comparison
search_bar_multi.submit(fn=search_model,
inputs=[search_bar_multi, api_key_textbox_multi],
outputs=model_drop_multi,
show_progress=True)
show_params_checkbox_multi.change(fn=show_params,
inputs=show_params_checkbox_multi,
outputs=params_box_multi)
private_checkbox_multi.change(fn=show_api_key_textbox,
inputs=private_checkbox_multi,
outputs=api_key_textbox_multi)
model_drop_multi.change(fn=forward_model_choice_multi,
inputs=model_drop_multi,
outputs=[models_multi])
models_multi.change(fn=show_choices_multi,
inputs=models_multi,
outputs=model_list)
generate_button_multi.click(fn=process_user_input_multi,
inputs=[models_multi,
input_text_multi,
api_key_textbox_multi,
length_multi,
temperature_multi,
top_p_multi,
top_k_multi],
outputs=model_list,
show_progress=True)
#demo.launch(debug=True)
if __name__ == "__main__":
demo.launch(enable_queue=False, debug=True) |