File size: 3,368 Bytes
d16155e
 
 
 
 
4d136b6
a189d7b
d16155e
 
 
 
 
 
 
 
ea1463f
e111f52
da97e63
0af46f8
 
 
da97e63
 
0af46f8
 
da97e63
0af46f8
da97e63
 
 
 
0af46f8
da97e63
 
 
 
 
0af46f8
da97e63
d16155e
 
7846b16
d16155e
 
 
 
 
 
 
 
 
 
 
 
9fa8865
d16155e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e111f52
d16155e
 
 
 
b4c6230
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import qdrant_client

from llama_index.core import VectorStoreIndex, ServiceContext, SimpleDirectoryReader
from llama_index.core import load_index_from_storage
from llama_index.llms.ollama import Ollama
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt
from llama_index.core import StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
from llama_index.core import set_global_service_context 

import gradio as gr

DOC_PATH = './data/pdf_esg'
INDEX_PATH = './storage'
llm = LlamaCPP(
    # You can pass in the URL to a GGML model to download it automatically
    # model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf',
    model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_K_M.gguf',
    # optionally, you can set the path to a pre-downloaded model instead of model_url
    model_path=None,
    temperature=0.1,
    max_new_tokens=256,
    # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
    context_window=4096,
    # kwargs to pass to __call__()
    generate_kwargs={},
    # kwargs to pass to __init__()
    # set to at least 1 to use GPU
    model_kwargs={"n_gpu_layers": -1},
    # transform inputs into Llama2 format
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
    verbose=True,
)
# Settings.llm = Ollama(model="mistral")
Settings.llm = llm
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
service_context = ServiceContext.from_defaults(llm=llm,embed_model = embed_model)
set_global_service_context(service_context)

def construct_index(doc_path=DOC_PATH, index_store=INDEX_PATH, use_cache=False):
    client = qdrant_client.QdrantClient(path="./qdrant_data")
    vector_store = QdrantVectorStore(client=client, collection_name="esg")
    storage_context = StorageContext.from_defaults(vector_store=vector_store)

    if use_cache:
        # rebuild storage context
        storage_context = StorageContext.from_defaults(persist_dir=index_store)
        index = load_index_from_storage(storage_context)  # load index
    else:
        reader = SimpleDirectoryReader(input_dir='./data/pdf_esg')
        documents = reader.load_data()
        index = VectorStoreIndex.from_documents(documents)
        index.storage_context.persist(index_store)
    return None

def qabot(input_text, index_store = INDEX_PATH):
  

    storage_context = StorageContext.from_defaults(persist_dir=index_store)

    # Load the data
    index = load_index_from_storage(storage_context)

    query_engine = index.as_query_engine()
    response = query_engine.query(input_text)
    return response.response

if __name__ == "__main__":
    # construct_index(DOC_PATH, use_cache=False)
    # create_index_retriever_query_engine()
    iface = gr.Interface(fn=qabot, inputs=gr.Textbox(lines=7, label='Enter your query'),
                         outputs="text",
                         title="ESG Chatbot")
    iface.launch(inline=False)