Spaces:
Sleeping
Sleeping
import torch | |
from transformers import (T5ForConditionalGeneration,T5Tokenizer) | |
import gradio as gr | |
best_model_path = "swcrazyfan/Dekingify-T5-Large" | |
model = T5ForConditionalGeneration.from_pretrained(best_model_path) | |
tokenizer = T5Tokenizer.from_pretrained("swcrazyfan/Dekingify-T5-Large") | |
def tokenize_data(text): | |
# Tokenize the review body | |
# input_ = "paraphrase: "+ str(text) + ' >' | |
input_ = "dekingify: " + str(text) + ' </s>' | |
max_len = 512 | |
# tokenize inputs | |
tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') | |
inputs={"input_ids": tokenized_inputs['input_ids'], | |
"attention_mask": tokenized_inputs['attention_mask']} | |
return inputs | |
#def generate_answers(text, max_length, min_length, num_beams): | |
def generate_answers(text, max_length, num_beams): | |
inputs = tokenize_data(text) | |
results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True, | |
num_beams=num_beams, | |
max_length=max_length, | |
# min_length=min_length, | |
early_stopping=True, | |
num_return_sequences=1) | |
answer = tokenizer.decode(results[0], skip_special_tokens=True) | |
return answer | |
#iface = gr.Interface(title="DeKingify", description="Write anything below. Then, click submit to 'DeKingify' it.", fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original Text",lines=10), gr.inputs.Slider(label="Maximum Length", minimum=1, maximum=512, default=512, step=1), gr.inputs.Slider(label="Minimum Length", minimum=1, maximum=512, default=1, step=1), gr.inputs.Slider(label="Number of Beams", minimum=1, maximum=50, default=5, step=1)], outputs=["text"]) | |
iface = gr.Interface(title="DeKingify", description="Write anything below. Then, click submit to 'DeKingify' it.", fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original Text",lines=10), gr.inputs.Slider(label="Maximum Length", minimum=1, maximum=512, default=512, step=1), gr.inputs.Slider(label="Number of Beams", minimum=1, maximum=50, default=5, step=1)], outputs=["text"]) | |
iface.launch(inline=False) |