Spaces:
Sleeping
Sleeping
File size: 1,892 Bytes
2c91872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import torch
from transformers import (T5ForConditionalGeneration,T5Tokenizer)
import gradio as gr
best_model_path = "swcrazyfan/Dekingify-T5-Large"
model = T5ForConditionalGeneration.from_pretrained(best_model_path)
tokenizer = T5Tokenizer.from_pretrained("swcrazyfan/Dekingify-T5-Large")
def tokenize_data(text):
# Tokenize the review body
# input_ = "paraphrase: "+ str(text) + ' >'
input_ = "deking: " + str(text) + ' </s>'
max_len = 512
# tokenize inputs
tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt')
inputs={"input_ids": tokenized_inputs['input_ids'],
"attention_mask": tokenized_inputs['attention_mask']}
return inputs
def generate_answers(text):
inputs = tokenize_data(text)
results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True,
num_beams=5,
max_length=512,
min_length=1,
early_stopping=True,
num_return_sequences=1)
answer = tokenizer.decode(results[0], skip_special_tokens=True)
return answer
#iface = gr.Interface(fn=generate_answers, inputs=["Write your text here..."], outputs=["Jamesified text"])
#iface.launch(inline=False, share=True)
iface = gr.Interface(title="Dekingify", description="Write anything from around the 17th-century below. Then, click submit to 'Dekingify' it (make the text more modern).", fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original Text",lines=10)], outputs=["text"])
#iface = gr.Interface(title="King Jamesify” fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original",lines=30)],outputs=[gr.outputs.Textbox(label="King Jamesified", lines=30)])
iface.launch(inline=False) |