File size: 9,508 Bytes
e9cd033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import json
import random
import gradio as gr
import modules
from pathlib import Path
from modules import script_callbacks
import modules.scripts as scripts

result_prompt = ""
base_dir = scripts.basedir()
dropdown_options_file = Path(base_dir, "json/dropdown_options.json")
category_data_file = Path(base_dir, "json/category_data.json")
style_data_file = Path(base_dir, "json/style_data.json")
prefix_data_file = Path(base_dir, "json/prefix_data.json")
lightning_data_file = Path(base_dir, "json/lightning_data.json")
lens_data_file = Path(base_dir, "json/lens_data.json")


class Model:
    '''
    Small strut to hold data for the text generator
    '''

    def __init__(self, name) -> None:
        self.name = name
        pass


def populate_dropdown_options():
    path = dropdown_options_file
    with open(path, 'r') as f:
        data = json.load(f)
    category_choices = data["category"]
    style_choices = data["style"]
    lightning_choices = data["lightning"]
    lens_choices = data["lens"]
    return tuple(category_choices), tuple(style_choices), tuple(lightning_choices), tuple(lens_choices),


def add_to_prompt(*args): 
    prompt, use_default_negative_prompt = args
    default_negative_prompt = "(worst quality:1.2), (low quality:1.2), (lowres:1.1), (monochrome:1.1), (greyscale), multiple views, comic, sketch, (((bad anatomy))), (((deformed))), (((disfigured))), watermark, multiple_views, mutation hands, mutation fingers, extra fingers, missing fingers, watermark"
    if(use_default_negative_prompt):
        return prompt, default_negative_prompt
    else:
        return prompt, "" 
    
    
def get_random_prompt(data):
    random_key = random.choice(list(data.keys()))
    random_array = random.choice(data[random_key])
    random_strings = random.sample(random_array, 3)
    return random_strings

def get_correct_prompt(data, selected_dropdown):
    correct_array = data[selected_dropdown]
    random_array = random.choice(correct_array)
    random_strings = random.sample(random_array, 3)
    random_strings.insert(0, selected_dropdown)
    
    return random_strings

def generate_prompt_output(*args):
    #all imported files
    prefix_path = prefix_data_file
    category_path = category_data_file
    style_path = style_data_file
    lightning_path = lightning_data_file
    lens_path = lens_data_file

    #destructure args
    category, style, lightning, lens, negative_prompt = args

    # Convert variables to lowercase
    category = category.lower()
    style = style.lower()
    lightning = lightning.lower()
    lens = lens.lower()

    # Open category_data.json and grab correct text
    with open(prefix_path, 'r') as f:
        prefix_data = json.load(f)
        prefix_prompt = random.sample(prefix_data, 6)
        modified_prefix_prompt = [f"(({item}))" for item in prefix_prompt]


    # Open category_data.json and grab correct text
    with open(category_path, 'r') as f2:
        category_data = json.load(f2)
    
    if category == "none":
        category_prompt = ""
    elif category == "random":
        category_prompt = get_random_prompt(category_data)
    else:
        category_prompt = get_correct_prompt(category_data, category)


    # Open style_data.json and grab correct text
    with open(style_path, 'r') as f3:
        style_data = json.load(f3)
        
    if style == "none":
        style_prompt = ""
    elif style == "random":
        style_prompt = get_random_prompt(style_data)
    else:
        style_prompt = get_correct_prompt(style_data, style)

    # Open lightning_data.json and grab correct text
    with open(lightning_path, 'r') as f4:
        lightning_data = json.load(f4)
        
    if lightning == "none":
        lightning_prompt = ""
    elif lightning == "random":
        lightning_prompt = get_random_prompt(lightning_data)
    else:
        lightning_prompt = get_correct_prompt(lightning_data, lightning)

    # Open lens_data.json and grab correct text
    with open(lens_path, 'r') as f5:
        lens_data = json.load(f5)
        
    if lens == "none":
        lens_prompt = ""
    elif lens == "random":
        lens_prompt = get_random_prompt(lens_data)
    else:
        lens_prompt = get_correct_prompt(lens_data, lens)


    prompt_output = modified_prefix_prompt, category_prompt, style_prompt, lightning_prompt, lens_prompt
    prompt_strings = []

    for sublist in prompt_output:
        # Join the sublist elements into a single string
        prompt_string = ", ".join(str(item) for item in sublist)
        if prompt_string:  # Check if the prompt_string is not empty
            prompt_strings.append(prompt_string)

    # Join the non-empty prompt_strings
    final_output = ", ".join(prompt_strings)

    return final_output



def on_ui_tabs():
    # UI structure
    txt2img_prompt = modules.ui.txt2img_paste_fields[0][0]
    img2img_prompt = modules.ui.img2img_paste_fields[0][0]

    txt2img_negative_prompt = modules.ui.txt2img_paste_fields[1][0]
    img2img_negative_prompt = modules.ui.img2img_paste_fields[1][0]

    

    with gr.Blocks(analytics_enabled=False) as prompt_generator:
        with gr.Tab("Prompt Generator"):
            with gr.Row():  # Use Row to arrange two columns side by side
                with gr.Column():  # Left column for dropdowns
                    category_choices, style_choices, lightning_choices, lens_choices = populate_dropdown_options()
                    
                    with gr.Row():
                        gr.HTML('''<h2 id="input_header">Input 👇</h2>''')
                    with gr.Row().style(equal_height=True):  # Place dropdowns side by side
                        # Create a dropdown to select
                        
                        category_dropdown = gr.Dropdown(
                            choices=category_choices,
                            value=category_choices[1],
                            label="Category", show_label=True
                        )

                        style_dropdown = gr.Dropdown(
                            choices=style_choices,
                            value=style_choices[1],
                            label="Style", show_label=True
                        )
                    with gr.Row():    
                        lightning_dropdown = gr.Dropdown(
                            choices=lightning_choices,
                            value=lightning_choices[1],
                            label="Lightning", show_label=True
                        )

                        lens_dropdown = gr.Dropdown(
                            choices=lens_choices,
                            value=lens_choices[1],
                            label="Lens", show_label=True
                        )
                    with gr.Row(): 
                        gr.HTML('''
                        <hr class="rounded" id="divider">
                    ''')
                    with gr.Row():
                        gr.HTML('''<h2 id="input_header">Links</h2>''')    
                    with gr.Row():
                        gr.HTML('''
                        <h3>Stable Diffusion Tutorials⚡</h3>
                        <container>
                            <a href="https://nextdiffusion.ai" target="_blank">
                                <button id="website_button" class="external-link">Website</button>
                            </a>
                            <a href="https://www.youtube.com/channel/UCd9UIUkLnjE-Fj-CGFdU74Q?sub_confirmation=1" target="_blank">
                                <button id="youtube_button" class="external-link">YouTube</button>
                            </a>
                        </container>
                    ''')
                        
                    
                with gr.Column():  # Right column for result_textbox and generate_button
                    # Add a Textbox to display the generated text
                    with gr.Row():
                        gr.HTML('''<h2 id="output_header">Output 👋</h2>''')
                    result_textbox = gr.Textbox(label="Generated Prompt", lines=3)
                    use_default_negative_prompt = gr.Checkbox(label="Include Negative Prompt", value=True, interactive=True, elem_id="negative_prompt_checkbox")
                    setattr(use_default_negative_prompt,"do_not_save_to_config",True)
                    with gr.Row():
                        txt2img = gr.Button("Send to txt2img")
                        img2img = gr.Button("Send to img2img")
                    # Create a button to trigger text generation
                    txt2img.click(add_to_prompt, inputs=[result_textbox, use_default_negative_prompt], outputs=[txt2img_prompt, txt2img_negative_prompt ]).then(None, _js='switch_to_txt2img',inputs=None, outputs=None)
                    img2img.click(add_to_prompt, inputs=[result_textbox, use_default_negative_prompt], outputs=[img2img_prompt, img2img_negative_prompt]).then(None, _js='switch_to_img2img',inputs=None, outputs=None)
                    generate_button = gr.Button(value="Generate", elem_id="generate_button")
                    

        # Register the callback for the Generate button
        generate_button.click(fn=generate_prompt_output, inputs=[category_dropdown, style_dropdown, lightning_dropdown, lens_dropdown, use_default_negative_prompt], outputs=[result_textbox])

    return (prompt_generator, "Next Diffusion ⚡", "Next Diffusion ⚡"),

script_callbacks.on_ui_tabs(on_ui_tabs)