Spaces:
Runtime error
Runtime error
import argparse | |
from omegaconf import OmegaConf | |
import torch | |
from diffusers import AutoencoderKL, DDIMScheduler | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from motionclone.models.unet import UNet3DConditionModel | |
from motionclone.models.sparse_controlnet import SparseControlNetModel | |
from motionclone.pipelines.pipeline_animation import AnimationPipeline | |
from motionclone.utils.util import load_weights, auto_download | |
from diffusers.utils.import_utils import is_xformers_available | |
from motionclone.utils.motionclone_functions import * | |
import json | |
from motionclone.utils.xformer_attention import * | |
def main(args): | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0)) | |
config = OmegaConf.load(args.inference_config) | |
adopted_dtype = torch.float16 | |
device = "cuda" | |
set_all_seed(42) | |
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype) | |
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype) | |
config.width = config.get("W", args.W) | |
config.height = config.get("H", args.H) | |
config.video_length = config.get("L", args.L) | |
if not os.path.exists(args.generated_videos_save_dir): | |
os.makedirs(args.generated_videos_save_dir) | |
OmegaConf.save(config, os.path.join(args.generated_videos_save_dir,"inference_config.json")) | |
model_config = OmegaConf.load(config.get("model_config", "")) | |
unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(model_config.unet_additional_kwargs),).to(device).to(dtype=adopted_dtype) | |
# load controlnet model | |
controlnet = None | |
if config.get("controlnet_path", "") != "": | |
# assert model_config.get("controlnet_images", "") != "" | |
assert config.get("controlnet_config", "") != "" | |
unet.config.num_attention_heads = 8 | |
unet.config.projection_class_embeddings_input_dim = None | |
controlnet_config = OmegaConf.load(config.controlnet_config) | |
controlnet = SparseControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})).to(device).to(dtype=adopted_dtype) | |
auto_download(config.controlnet_path, is_dreambooth_lora=False) | |
print(f"loading controlnet checkpoint from {config.controlnet_path} ...") | |
controlnet_state_dict = torch.load(config.controlnet_path, map_location="cpu") | |
controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict | |
controlnet_state_dict = {name: param for name, param in controlnet_state_dict.items() if "pos_encoder.pe" not in name} | |
controlnet_state_dict.pop("animatediff_config", "") | |
controlnet.load_state_dict(controlnet_state_dict) | |
del controlnet_state_dict | |
# set xformers | |
if is_xformers_available() and (not args.without_xformers): | |
unet.enable_xformers_memory_efficient_attention() | |
pipeline = AnimationPipeline( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, | |
controlnet=controlnet, | |
scheduler=DDIMScheduler(**OmegaConf.to_container(model_config.noise_scheduler_kwargs)), | |
).to(device) | |
pipeline = load_weights( | |
pipeline, | |
# motion module | |
motion_module_path = config.get("motion_module", ""), | |
# domain adapter | |
adapter_lora_path = config.get("adapter_lora_path", ""), | |
adapter_lora_scale = config.get("adapter_lora_scale", 1.0), | |
# image layer | |
dreambooth_model_path = config.get("dreambooth_path", ""), | |
).to(device) | |
pipeline.text_encoder.to(dtype=adopted_dtype) | |
# customized functions in motionclone_functions | |
pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler) | |
pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler) | |
pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet) | |
pipeline.sample_video = sample_video.__get__(pipeline) | |
pipeline.single_step_video = single_step_video.__get__(pipeline) | |
pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline) | |
pipeline.add_noise = add_noise.__get__(pipeline) | |
pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline) | |
pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline) | |
for param in pipeline.unet.parameters(): | |
param.requires_grad = False | |
for param in pipeline.controlnet.parameters(): | |
param.requires_grad = False | |
pipeline.input_config, pipeline.unet.input_config = config, config | |
pipeline.unet = prep_unet_attention(pipeline.unet,pipeline.input_config.motion_guidance_blocks) | |
pipeline.unet = prep_unet_conv(pipeline.unet) | |
pipeline.scheduler.customized_set_timesteps(config.inference_steps, config.guidance_steps,config.guidance_scale,device=device,timestep_spacing_type = "uneven") | |
with open(args.examples, 'r') as files: | |
for line in files: | |
# prepare infor of each case | |
example_infor = json.loads(line) | |
config.video_path = example_infor["video_path"] | |
config.condition_image_path_list = example_infor["condition_image_paths"] | |
config.image_index = example_infor.get("image_index",[0]) | |
assert len(config.image_index) == len(config.condition_image_path_list) | |
config.new_prompt = example_infor["new_prompt"] + config.get("positive_prompt", "") | |
config.controlnet_scale = example_infor.get("controlnet_scale", 1.0) | |
pipeline.input_config, pipeline.unet.input_config = config, config # update config | |
# perform motion representation extraction | |
seed_motion = seed_motion = example_infor.get("seed", args.default_seed) | |
generator = torch.Generator(device=pipeline.device) | |
generator.manual_seed(seed_motion) | |
if not os.path.exists(args.motion_representation_save_dir): | |
os.makedirs(args.motion_representation_save_dir) | |
motion_representation_path = os.path.join(args.motion_representation_save_dir, os.path.splitext(os.path.basename(config.video_path))[0] + '.pt') | |
pipeline.obtain_motion_representation(generator= generator, motion_representation_path = motion_representation_path, use_controlnet=True,) | |
# perform video generation | |
seed = seed_motion # can assign other seed here | |
generator = torch.Generator(device=pipeline.device) | |
generator.manual_seed(seed) | |
pipeline.input_config.seed = seed | |
videos = pipeline.sample_video(generator = generator, add_controlnet=True,) | |
videos = rearrange(videos, "b c f h w -> b f h w c") | |
save_path = os.path.join(args.generated_videos_save_dir, os.path.splitext(os.path.basename(config.video_path))[0] | |
+ "_" + config.new_prompt.strip().replace(' ', '_') + str(seed_motion) + "_" +str(seed)+'.mp4') | |
videos_uint8 = (videos[0] * 255).astype(np.uint8) | |
imageio.mimwrite(save_path, videos_uint8, fps=8) | |
print(save_path,"is done") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--pretrained-model-path", type=str, default="models/StableDiffusion",) | |
parser.add_argument("--inference_config", type=str, default="configs/i2v_sketch.yaml") | |
parser.add_argument("--examples", type=str, default="configs/i2v_sketch.jsonl") | |
parser.add_argument("--motion-representation-save-dir", type=str, default="motion_representation/") | |
parser.add_argument("--generated-videos-save-dir", type=str, default="generated_videos/") | |
parser.add_argument("--visible_gpu", type=str, default=None) | |
parser.add_argument("--default-seed", type=int, default=76739) | |
parser.add_argument("--L", type=int, default=16) | |
parser.add_argument("--W", type=int, default=512) | |
parser.add_argument("--H", type=int, default=512) | |
parser.add_argument("--without-xformers", action="store_true") | |
args = parser.parse_args() | |
main(args) | |