|
import os.path |
|
from data.base_dataset import BaseDataset, get_params, get_transform |
|
from data.image_folder import make_dataset |
|
from PIL import Image |
|
import random |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
class SingleSrDataset(BaseDataset): |
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
return parser |
|
|
|
def __init__(self, opt): |
|
self.opt = opt |
|
self.root = opt.dataroot |
|
self.dir_B = os.path.join(opt.dataroot, opt.phase, opt.folder, 'imgs') |
|
|
|
|
|
self.B_paths = make_dataset(self.dir_B) |
|
|
|
self.B_paths = sorted(self.B_paths) |
|
|
|
self.B_size = len(self.B_paths) |
|
|
|
|
|
|
|
def __getitem__(self, index): |
|
B_path = self.B_paths[index] |
|
|
|
B_img = Image.open(B_path).convert('RGB') |
|
if os.path.exists(B_path.replace('imgs','line').replace('.jpg','.png')): |
|
L_img = Image.open(B_path.replace('imgs','line').replace('.jpg','.png')) |
|
else: |
|
L_img = Image.open(B_path.replace('imgs','line').replace('.png','.jpg')) |
|
B_img = B_img.resize(L_img.size, Image.ANTIALIAS) |
|
|
|
ow, oh = B_img.size |
|
transform_params = get_params(self.opt, B_img.size) |
|
B_transform = get_transform(self.opt, transform_params, grayscale=True) |
|
B = B_transform(B_img) |
|
L = B_transform(L_img) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return {'B': B, 'Bs': B, 'Bi': B, 'Bl': L, |
|
'A': torch.zeros(1), 'Ai': torch.zeros(1), 'L': torch.zeros(1), |
|
'A_paths': B_path, 'h': oh, 'w': ow} |
|
|
|
def __len__(self): |
|
return self.B_size |
|
|
|
def name(self): |
|
return 'SingleSrDataset' |
|
|
|
|
|
def M_transform(feat, opt, params=None): |
|
outfeat = feat.copy() |
|
if params is not None: |
|
oh,ow = feat.shape[1:] |
|
x1, y1 = params['crop_pos'] |
|
tw = th = opt.crop_size |
|
if (ow > tw or oh > th): |
|
outfeat = outfeat[:,y1:y1+th,x1:x1+tw] |
|
if params['flip']: |
|
outfeat = np.flip(outfeat, 2).copy() |
|
return torch.from_numpy(outfeat).float()*2-1.0 |