|
from __future__ import print_function |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import os |
|
import pickle |
|
|
|
|
|
def tensor2im(input_image, imtype=np.uint8): |
|
""""Convert a Tensor array into a numpy image array. |
|
Parameters: |
|
input_image (tensor) -- the input image tensor array |
|
imtype (type) -- the desired type of the converted numpy array |
|
""" |
|
if not isinstance(input_image, np.ndarray): |
|
if isinstance(input_image, torch.Tensor): |
|
image_tensor = input_image.data |
|
else: |
|
return input_image |
|
image_numpy = image_tensor[0].cpu().float().numpy() |
|
if image_numpy.shape[0] == 1: |
|
image_numpy = np.tile(image_numpy, (3, 1, 1)) |
|
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 |
|
else: |
|
image_numpy = input_image |
|
return image_numpy.astype(imtype) |
|
|
|
|
|
def tensor2vec(vector_tensor): |
|
numpy_vec = vector_tensor.data.cpu().numpy() |
|
if numpy_vec.ndim == 4: |
|
return numpy_vec[:, :, 0, 0] |
|
else: |
|
return numpy_vec |
|
|
|
|
|
def pickle_load(file_name): |
|
data = None |
|
with open(file_name, 'rb') as f: |
|
data = pickle.load(f) |
|
return data |
|
|
|
|
|
def pickle_save(file_name, data): |
|
with open(file_name, 'wb') as f: |
|
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
|
|
def diagnose_network(net, name='network'): |
|
"""Calculate and print the mean of average absolute(gradients) |
|
Parameters: |
|
net (torch network) -- Torch network |
|
name (str) -- the name of the network |
|
""" |
|
mean = 0.0 |
|
count = 0 |
|
for param in net.parameters(): |
|
if param.grad is not None: |
|
mean += torch.mean(torch.abs(param.grad.data)) |
|
count += 1 |
|
if count > 0: |
|
mean = mean / count |
|
print(name) |
|
print(mean) |
|
|
|
|
|
def interp_z(z0, z1, num_frames, interp_mode='linear'): |
|
zs = [] |
|
if interp_mode == 'linear': |
|
for n in range(num_frames): |
|
ratio = n / float(num_frames - 1) |
|
z_t = (1 - ratio) * z0 + ratio * z1 |
|
zs.append(z_t[np.newaxis, :]) |
|
zs = np.concatenate(zs, axis=0).astype(np.float32) |
|
|
|
if interp_mode == 'slerp': |
|
z0_n = z0 / (np.linalg.norm(z0) + 1e-10) |
|
z1_n = z1 / (np.linalg.norm(z1) + 1e-10) |
|
omega = np.arccos(np.dot(z0_n, z1_n)) |
|
sin_omega = np.sin(omega) |
|
if sin_omega < 1e-10 and sin_omega > -1e-10: |
|
zs = interp_z(z0, z1, num_frames, interp_mode='linear') |
|
else: |
|
for n in range(num_frames): |
|
ratio = n / float(num_frames - 1) |
|
z_t = np.sin((1 - ratio) * omega) / sin_omega * z0 + np.sin(ratio * omega) / sin_omega * z1 |
|
zs.append(z_t[np.newaxis, :]) |
|
zs = np.concatenate(zs, axis=0).astype(np.float32) |
|
|
|
return zs |
|
|
|
|
|
def save_image(image_numpy, image_path): |
|
"""Save a numpy image to the disk |
|
Parameters: |
|
image_numpy (numpy array) -- input numpy array |
|
image_path (str) -- the path of the image |
|
""" |
|
image_pil = Image.fromarray(image_numpy) |
|
image_pil.save(image_path) |
|
|
|
|
|
def print_numpy(x, val=True, shp=False): |
|
"""Print the mean, min, max, median, std, and size of a numpy array |
|
Parameters: |
|
val (bool) -- if print the values of the numpy array |
|
shp (bool) -- if print the shape of the numpy array |
|
""" |
|
x = x.astype(np.float64) |
|
if shp: |
|
print('shape,', x.shape) |
|
if val: |
|
x = x.flatten() |
|
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( |
|
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) |
|
|
|
|
|
def mkdirs(paths): |
|
"""create empty directories if they don't exist |
|
Parameters: |
|
paths (str list) -- a list of directory paths |
|
""" |
|
if isinstance(paths, list) and not isinstance(paths, str): |
|
for path in paths: |
|
mkdir(path) |
|
else: |
|
mkdir(paths) |
|
|
|
|
|
def mkdir(path): |
|
"""create a single empty directory if it didn't exist |
|
Parameters: |
|
path (str) -- a single directory path |
|
""" |
|
if not os.path.exists(path): |
|
os.makedirs(path, exist_ok=True) |
|
|