|
import os |
|
from options.test_options import TestOptions |
|
from data import create_dataset |
|
from models import create_model |
|
from util.visualizer import save_images |
|
from itertools import islice |
|
from util import html |
|
import cv2 |
|
|
|
seed = 10 |
|
import torch |
|
import numpy as np |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
opt = TestOptions().parse() |
|
opt.num_threads = 1 |
|
opt.batch_size = 1 |
|
opt.serial_batches = True |
|
|
|
model = create_model(opt) |
|
model.setup(opt) |
|
model.eval() |
|
print('Loading model %s' % opt.model) |
|
|
|
testdata = ['manga_paper'] |
|
|
|
|
|
opt.dataset_mode = 'singleSr' |
|
for folder in testdata: |
|
opt.folder = folder |
|
|
|
dataset = create_dataset(opt) |
|
web_dir = os.path.join(opt.results_dir, opt.folder + '_Sr2Co') |
|
webpage = html.HTML(web_dir, 'Training = %s, Phase = %s, Class =%s' % (opt.name, opt.phase, opt.name)) |
|
|
|
for i, data in enumerate(islice(dataset, opt.num_test)): |
|
h = data['h'] |
|
w = data['w'] |
|
model.set_input(data) |
|
fake_sty = model.get_z_random(1, 64, truncation=True, tvalue=1.25) |
|
fake_B, SCR, line = model.forward(AtoB=False, sty=fake_sty) |
|
images=[fake_B[:,:,:h,:w]] |
|
names=['color'] |
|
|
|
img_path = 'input_%3.3d' % i |
|
save_images(webpage, images, names, img_path, aspect_ratio=opt.aspect_ratio, width=opt.crop_size) |
|
webpage.save() |
|
|
|
testdata = ['western_paper'] |
|
|
|
opt.dataset_mode = 'singleCo' |
|
for folder in testdata: |
|
opt.folder = folder |
|
|
|
dataset = create_dataset(opt) |
|
web_dir = os.path.join(opt.results_dir, opt.folder + '_Sr2Co') |
|
webpage = html.HTML(web_dir, 'Training = %s, Phase = %s, Class =%s' % (opt.name, opt.phase, opt.name)) |
|
for i, data in enumerate(islice(dataset, opt.num_test)): |
|
h = data['h'] |
|
w = data['w'] |
|
model.set_input(data) |
|
fake_B, fake_B2, SCR = model.forward(AtoB=True) |
|
images=[fake_B2[:,:,:h,:w]] |
|
names=['manga'] |
|
|
|
img_path = 'input_%3.3d' % i |
|
save_images(webpage, images, names, img_path, aspect_ratio=opt.aspect_ratio, width=opt.crop_size) |
|
webpage.save() |
|
|