|
import os.path |
|
from data.base_dataset import BaseDataset, get_params, get_transform |
|
from data.image_folder import make_dataset |
|
from PIL import Image |
|
|
|
|
|
class AlignedDataset(BaseDataset): |
|
"""A dataset class for paired image dataset. |
|
|
|
It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}. |
|
During test time, you need to prepare a directory '/path/to/data/test'. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize this dataset class. |
|
|
|
Parameters: |
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
BaseDataset.__init__(self, opt) |
|
self.dir_AB = os.path.join(opt.dataroot, opt.phase) |
|
self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) |
|
assert(self.opt.load_size >= self.opt.crop_size) |
|
self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc |
|
self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc |
|
|
|
def __getitem__(self, index): |
|
"""Return a data point and its metadata information. |
|
|
|
Parameters: |
|
index - - a random integer for data indexing |
|
|
|
Returns a dictionary that contains A, B, A_paths and B_paths |
|
A (tensor) - - an image in the input domain |
|
B (tensor) - - its corresponding image in the target domain |
|
A_paths (str) - - image paths |
|
B_paths (str) - - image paths (same as A_paths) |
|
""" |
|
|
|
AB_path = self.AB_paths[index%len(self.AB_paths)] |
|
AB = Image.open(AB_path).convert('RGB') |
|
|
|
w, h = AB.size |
|
w2 = int(w / 2) |
|
A = AB.crop((0, 0, w2, h)) |
|
B = AB.crop((w2, 0, w, h)) |
|
|
|
|
|
transform_params = get_params(self.opt, A.size) |
|
A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1)) |
|
B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1)) |
|
|
|
A = A_transform(A) |
|
B = B_transform(B) |
|
|
|
return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path} |
|
|
|
def __len__(self): |
|
"""Return the total number of images in the dataset.""" |
|
return len(self.AB_paths)*100 |
|
|