File size: 51,214 Bytes
77771e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 |
import argparse
import inspect
import os
import numpy as np
import torch
import yaml
from torch.nn import functional as F
from transformers import CLIPConfig, CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5Tokenizer
from diffusers import DDPMScheduler, IFPipeline, IFSuperResolutionPipeline, UNet2DConditionModel
from diffusers.pipelines.deepfloyd_if.safety_checker import IFSafetyChecker
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", required=False, default=None, type=str)
parser.add_argument("--dump_path_stage_2", required=False, default=None, type=str)
parser.add_argument("--dump_path_stage_3", required=False, default=None, type=str)
parser.add_argument("--unet_config", required=False, default=None, type=str, help="Path to unet config file")
parser.add_argument(
"--unet_checkpoint_path", required=False, default=None, type=str, help="Path to unet checkpoint file"
)
parser.add_argument(
"--unet_checkpoint_path_stage_2",
required=False,
default=None,
type=str,
help="Path to stage 2 unet checkpoint file",
)
parser.add_argument(
"--unet_checkpoint_path_stage_3",
required=False,
default=None,
type=str,
help="Path to stage 3 unet checkpoint file",
)
parser.add_argument("--p_head_path", type=str, required=True)
parser.add_argument("--w_head_path", type=str, required=True)
args = parser.parse_args()
return args
def main(args):
tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-xxl")
text_encoder = T5EncoderModel.from_pretrained("google/t5-v1_1-xxl")
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
safety_checker = convert_safety_checker(p_head_path=args.p_head_path, w_head_path=args.w_head_path)
if args.unet_config is not None and args.unet_checkpoint_path is not None and args.dump_path is not None:
convert_stage_1_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args)
if args.unet_checkpoint_path_stage_2 is not None and args.dump_path_stage_2 is not None:
convert_super_res_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args, stage=2)
if args.unet_checkpoint_path_stage_3 is not None and args.dump_path_stage_3 is not None:
convert_super_res_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args, stage=3)
def convert_stage_1_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args):
unet = get_stage_1_unet(args.unet_config, args.unet_checkpoint_path)
scheduler = DDPMScheduler(
variance_type="learned_range",
beta_schedule="squaredcos_cap_v2",
prediction_type="epsilon",
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.5,
)
pipe = IFPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=True,
)
pipe.save_pretrained(args.dump_path)
def convert_super_res_pipeline(tokenizer, text_encoder, feature_extractor, safety_checker, args, stage):
if stage == 2:
unet_checkpoint_path = args.unet_checkpoint_path_stage_2
sample_size = None
dump_path = args.dump_path_stage_2
elif stage == 3:
unet_checkpoint_path = args.unet_checkpoint_path_stage_3
sample_size = 1024
dump_path = args.dump_path_stage_3
else:
assert False
unet = get_super_res_unet(unet_checkpoint_path, verify_param_count=False, sample_size=sample_size)
image_noising_scheduler = DDPMScheduler(
beta_schedule="squaredcos_cap_v2",
)
scheduler = DDPMScheduler(
variance_type="learned_range",
beta_schedule="squaredcos_cap_v2",
prediction_type="epsilon",
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
)
pipe = IFSuperResolutionPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
scheduler=scheduler,
image_noising_scheduler=image_noising_scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=True,
)
pipe.save_pretrained(dump_path)
def get_stage_1_unet(unet_config, unet_checkpoint_path):
original_unet_config = yaml.safe_load(unet_config)
original_unet_config = original_unet_config["params"]
unet_diffusers_config = create_unet_diffusers_config(original_unet_config)
unet = UNet2DConditionModel(**unet_diffusers_config)
device = "cuda" if torch.cuda.is_available() else "cpu"
unet_checkpoint = torch.load(unet_checkpoint_path, map_location=device)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
unet_checkpoint, unet_diffusers_config, path=unet_checkpoint_path
)
unet.load_state_dict(converted_unet_checkpoint)
return unet
def convert_safety_checker(p_head_path, w_head_path):
state_dict = {}
# p head
p_head = np.load(p_head_path)
p_head_weights = p_head["weights"]
p_head_weights = torch.from_numpy(p_head_weights)
p_head_weights = p_head_weights.unsqueeze(0)
p_head_biases = p_head["biases"]
p_head_biases = torch.from_numpy(p_head_biases)
p_head_biases = p_head_biases.unsqueeze(0)
state_dict["p_head.weight"] = p_head_weights
state_dict["p_head.bias"] = p_head_biases
# w head
w_head = np.load(w_head_path)
w_head_weights = w_head["weights"]
w_head_weights = torch.from_numpy(w_head_weights)
w_head_weights = w_head_weights.unsqueeze(0)
w_head_biases = w_head["biases"]
w_head_biases = torch.from_numpy(w_head_biases)
w_head_biases = w_head_biases.unsqueeze(0)
state_dict["w_head.weight"] = w_head_weights
state_dict["w_head.bias"] = w_head_biases
# vision model
vision_model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
vision_model_state_dict = vision_model.state_dict()
for key, value in vision_model_state_dict.items():
key = f"vision_model.{key}"
state_dict[key] = value
# full model
config = CLIPConfig.from_pretrained("openai/clip-vit-large-patch14")
safety_checker = IFSafetyChecker(config)
safety_checker.load_state_dict(state_dict)
return safety_checker
def create_unet_diffusers_config(original_unet_config, class_embed_type=None):
attention_resolutions = parse_list(original_unet_config["attention_resolutions"])
attention_resolutions = [original_unet_config["image_size"] // int(res) for res in attention_resolutions]
channel_mult = parse_list(original_unet_config["channel_mult"])
block_out_channels = [original_unet_config["model_channels"] * mult for mult in channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnDownBlock2D"
elif original_unet_config["resblock_updown"]:
block_type = "ResnetDownsampleBlock2D"
else:
block_type = "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnUpBlock2D"
elif original_unet_config["resblock_updown"]:
block_type = "ResnetUpsampleBlock2D"
else:
block_type = "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
head_dim = original_unet_config["num_head_channels"]
use_linear_projection = (
original_unet_config["use_linear_in_transformer"]
if "use_linear_in_transformer" in original_unet_config
else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim = [5, 10, 20, 20]
projection_class_embeddings_input_dim = None
if class_embed_type is None:
if "num_classes" in original_unet_config:
if original_unet_config["num_classes"] == "sequential":
class_embed_type = "projection"
assert "adm_in_channels" in original_unet_config
projection_class_embeddings_input_dim = original_unet_config["adm_in_channels"]
else:
raise NotImplementedError(
f"Unknown conditional unet num_classes config: {original_unet_config['num_classes']}"
)
config = {
"sample_size": original_unet_config["image_size"],
"in_channels": original_unet_config["in_channels"],
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": original_unet_config["num_res_blocks"],
"cross_attention_dim": original_unet_config["encoder_channels"],
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"out_channels": original_unet_config["out_channels"],
"up_block_types": tuple(up_block_types),
"upcast_attention": False, # TODO: guessing
"cross_attention_norm": "group_norm",
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"addition_embed_type": "text",
"act_fn": "gelu",
}
if original_unet_config["use_scale_shift_norm"]:
config["resnet_time_scale_shift"] = "scale_shift"
if "encoder_dim" in original_unet_config:
config["encoder_hid_dim"] = original_unet_config["encoder_dim"]
return config
def convert_ldm_unet_checkpoint(unet_state_dict, config, path=None):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
if config["class_embed_type"] in [None, "identity"]:
# No parameters to port
...
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
else:
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
# TODO need better check than i in [4, 8, 12, 16]
block_type = config["down_block_types"][block_id]
if (block_type == "ResnetDownsampleBlock2D" or block_type == "SimpleCrossAttnDownBlock2D") and i in [
4,
8,
12,
16,
]:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.downsamplers.0"}
else:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
old_path = f"input_blocks.{i}.1"
new_path = f"down_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(attentions)
meta_path = {"old": old_path, "new": new_path}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
old_path = "middle_block.1"
new_path = "mid_block.attentions.0"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
# len(output_block_list) == 1 -> resnet
# len(output_block_list) == 2 -> resnet, attention
# len(output_block_list) == 3 -> resnet, attention, upscale resnet
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
old_path = f"output_blocks.{i}.1"
new_path = f"up_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(attentions)
meta_path = {
"old": old_path,
"new": new_path,
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(output_block_list) == 3:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.2" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.2", "new": f"up_blocks.{block_id}.upsamplers.0"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
if "encoder_proj.weight" in unet_state_dict:
new_checkpoint["encoder_hid_proj.weight"] = unet_state_dict.pop("encoder_proj.weight")
new_checkpoint["encoder_hid_proj.bias"] = unet_state_dict.pop("encoder_proj.bias")
if "encoder_pooling.0.weight" in unet_state_dict:
new_checkpoint["add_embedding.norm1.weight"] = unet_state_dict.pop("encoder_pooling.0.weight")
new_checkpoint["add_embedding.norm1.bias"] = unet_state_dict.pop("encoder_pooling.0.bias")
new_checkpoint["add_embedding.pool.positional_embedding"] = unet_state_dict.pop(
"encoder_pooling.1.positional_embedding"
)
new_checkpoint["add_embedding.pool.k_proj.weight"] = unet_state_dict.pop("encoder_pooling.1.k_proj.weight")
new_checkpoint["add_embedding.pool.k_proj.bias"] = unet_state_dict.pop("encoder_pooling.1.k_proj.bias")
new_checkpoint["add_embedding.pool.q_proj.weight"] = unet_state_dict.pop("encoder_pooling.1.q_proj.weight")
new_checkpoint["add_embedding.pool.q_proj.bias"] = unet_state_dict.pop("encoder_pooling.1.q_proj.bias")
new_checkpoint["add_embedding.pool.v_proj.weight"] = unet_state_dict.pop("encoder_pooling.1.v_proj.weight")
new_checkpoint["add_embedding.pool.v_proj.bias"] = unet_state_dict.pop("encoder_pooling.1.v_proj.bias")
new_checkpoint["add_embedding.proj.weight"] = unet_state_dict.pop("encoder_pooling.2.weight")
new_checkpoint["add_embedding.proj.bias"] = unet_state_dict.pop("encoder_pooling.2.bias")
new_checkpoint["add_embedding.norm2.weight"] = unet_state_dict.pop("encoder_pooling.3.weight")
new_checkpoint["add_embedding.norm2.bias"] = unet_state_dict.pop("encoder_pooling.3.bias")
return new_checkpoint
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
if "qkv" in new_item:
continue
if "encoder_kv" in new_item:
continue
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = new_item.replace("norm_encoder.weight", "norm_cross.weight")
new_item = new_item.replace("norm_encoder.bias", "norm_cross.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_attention_to_checkpoint(new_checkpoint, unet_state_dict, old_path, new_path, config):
qkv_weight = unet_state_dict.pop(f"{old_path}.qkv.weight")
qkv_weight = qkv_weight[:, :, 0]
qkv_bias = unet_state_dict.pop(f"{old_path}.qkv.bias")
is_cross_attn_only = "only_cross_attention" in config and config["only_cross_attention"]
split = 1 if is_cross_attn_only else 3
weights, bias = split_attentions(
weight=qkv_weight,
bias=qkv_bias,
split=split,
chunk_size=config["attention_head_dim"],
)
if is_cross_attn_only:
query_weight, q_bias = weights, bias
new_checkpoint[f"{new_path}.to_q.weight"] = query_weight[0]
new_checkpoint[f"{new_path}.to_q.bias"] = q_bias[0]
else:
[query_weight, key_weight, value_weight], [q_bias, k_bias, v_bias] = weights, bias
new_checkpoint[f"{new_path}.to_q.weight"] = query_weight
new_checkpoint[f"{new_path}.to_q.bias"] = q_bias
new_checkpoint[f"{new_path}.to_k.weight"] = key_weight
new_checkpoint[f"{new_path}.to_k.bias"] = k_bias
new_checkpoint[f"{new_path}.to_v.weight"] = value_weight
new_checkpoint[f"{new_path}.to_v.bias"] = v_bias
encoder_kv_weight = unet_state_dict.pop(f"{old_path}.encoder_kv.weight")
encoder_kv_weight = encoder_kv_weight[:, :, 0]
encoder_kv_bias = unet_state_dict.pop(f"{old_path}.encoder_kv.bias")
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions(
weight=encoder_kv_weight,
bias=encoder_kv_bias,
split=2,
chunk_size=config["attention_head_dim"],
)
new_checkpoint[f"{new_path}.add_k_proj.weight"] = encoder_k_weight
new_checkpoint[f"{new_path}.add_k_proj.bias"] = encoder_k_bias
new_checkpoint[f"{new_path}.add_v_proj.weight"] = encoder_v_weight
new_checkpoint[f"{new_path}.add_v_proj.bias"] = encoder_v_bias
def assign_to_checkpoint(paths, checkpoint, old_checkpoint, additional_replacements=None, config=None):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
for path in paths:
new_path = path["new"]
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path or "to_out.0.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
def parse_list(value):
if isinstance(value, str):
value = value.split(",")
value = [int(v) for v in value]
elif isinstance(value, list):
pass
else:
raise ValueError(f"Can't parse list for type: {type(value)}")
return value
# below is copy and pasted from original convert_if_stage_2.py script
def get_super_res_unet(unet_checkpoint_path, verify_param_count=True, sample_size=None):
orig_path = unet_checkpoint_path
original_unet_config = yaml.safe_load(os.path.join(orig_path, "config.yml"))
original_unet_config = original_unet_config["params"]
unet_diffusers_config = superres_create_unet_diffusers_config(original_unet_config)
unet_diffusers_config["time_embedding_dim"] = original_unet_config["model_channels"] * int(
original_unet_config["channel_mult"].split(",")[-1]
)
if original_unet_config["encoder_dim"] != original_unet_config["encoder_channels"]:
unet_diffusers_config["encoder_hid_dim"] = original_unet_config["encoder_dim"]
unet_diffusers_config["class_embed_type"] = "timestep"
unet_diffusers_config["addition_embed_type"] = "text"
unet_diffusers_config["time_embedding_act_fn"] = "gelu"
unet_diffusers_config["resnet_skip_time_act"] = True
unet_diffusers_config["resnet_out_scale_factor"] = 1 / 0.7071
unet_diffusers_config["mid_block_scale_factor"] = 1 / 0.7071
unet_diffusers_config["only_cross_attention"] = (
bool(original_unet_config["disable_self_attentions"])
if (
"disable_self_attentions" in original_unet_config
and isinstance(original_unet_config["disable_self_attentions"], int)
)
else True
)
if sample_size is None:
unet_diffusers_config["sample_size"] = original_unet_config["image_size"]
else:
# The second upscaler unet's sample size is incorrectly specified
# in the config and is instead hardcoded in source
unet_diffusers_config["sample_size"] = sample_size
unet_checkpoint = torch.load(os.path.join(unet_checkpoint_path, "pytorch_model.bin"), map_location="cpu")
if verify_param_count:
# check that architecture matches - is a bit slow
verify_param_count(orig_path, unet_diffusers_config)
converted_unet_checkpoint = superres_convert_ldm_unet_checkpoint(
unet_checkpoint, unet_diffusers_config, path=unet_checkpoint_path
)
converted_keys = converted_unet_checkpoint.keys()
model = UNet2DConditionModel(**unet_diffusers_config)
expected_weights = model.state_dict().keys()
diff_c_e = set(converted_keys) - set(expected_weights)
diff_e_c = set(expected_weights) - set(converted_keys)
assert len(diff_e_c) == 0, f"Expected, but not converted: {diff_e_c}"
assert len(diff_c_e) == 0, f"Converted, but not expected: {diff_c_e}"
model.load_state_dict(converted_unet_checkpoint)
return model
def superres_create_unet_diffusers_config(original_unet_config):
attention_resolutions = parse_list(original_unet_config["attention_resolutions"])
attention_resolutions = [original_unet_config["image_size"] // int(res) for res in attention_resolutions]
channel_mult = parse_list(original_unet_config["channel_mult"])
block_out_channels = [original_unet_config["model_channels"] * mult for mult in channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnDownBlock2D"
elif original_unet_config["resblock_updown"]:
block_type = "ResnetDownsampleBlock2D"
else:
block_type = "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnUpBlock2D"
elif original_unet_config["resblock_updown"]:
block_type = "ResnetUpsampleBlock2D"
else:
block_type = "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
head_dim = original_unet_config["num_head_channels"]
use_linear_projection = (
original_unet_config["use_linear_in_transformer"]
if "use_linear_in_transformer" in original_unet_config
else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim = [5, 10, 20, 20]
class_embed_type = None
projection_class_embeddings_input_dim = None
if "num_classes" in original_unet_config:
if original_unet_config["num_classes"] == "sequential":
class_embed_type = "projection"
assert "adm_in_channels" in original_unet_config
projection_class_embeddings_input_dim = original_unet_config["adm_in_channels"]
else:
raise NotImplementedError(
f"Unknown conditional unet num_classes config: {original_unet_config['num_classes']}"
)
config = {
"in_channels": original_unet_config["in_channels"],
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": tuple(original_unet_config["num_res_blocks"]),
"cross_attention_dim": original_unet_config["encoder_channels"],
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"out_channels": original_unet_config["out_channels"],
"up_block_types": tuple(up_block_types),
"upcast_attention": False, # TODO: guessing
"cross_attention_norm": "group_norm",
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"act_fn": "gelu",
}
if original_unet_config["use_scale_shift_norm"]:
config["resnet_time_scale_shift"] = "scale_shift"
return config
def superres_convert_ldm_unet_checkpoint(unet_state_dict, config, path=None, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
if config["class_embed_type"] is None:
# No parameters to port
...
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["aug_proj.0.weight"]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["aug_proj.0.bias"]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["aug_proj.2.weight"]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["aug_proj.2.bias"]
else:
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
if "encoder_proj.weight" in unet_state_dict:
new_checkpoint["encoder_hid_proj.weight"] = unet_state_dict["encoder_proj.weight"]
new_checkpoint["encoder_hid_proj.bias"] = unet_state_dict["encoder_proj.bias"]
if "encoder_pooling.0.weight" in unet_state_dict:
mapping = {
"encoder_pooling.0": "add_embedding.norm1",
"encoder_pooling.1": "add_embedding.pool",
"encoder_pooling.2": "add_embedding.proj",
"encoder_pooling.3": "add_embedding.norm2",
}
for key in unet_state_dict.keys():
if key.startswith("encoder_pooling"):
prefix = key[: len("encoder_pooling.0")]
new_key = key.replace(prefix, mapping[prefix])
new_checkpoint[new_key] = unet_state_dict[key]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
for layer_id in range(num_output_blocks)
}
if not isinstance(config["layers_per_block"], int):
layers_per_block_list = [e + 1 for e in config["layers_per_block"]]
layers_per_block_cumsum = list(np.cumsum(layers_per_block_list))
downsampler_ids = layers_per_block_cumsum
else:
# TODO need better check than i in [4, 8, 12, 16]
downsampler_ids = [4, 8, 12, 16]
for i in range(1, num_input_blocks):
if isinstance(config["layers_per_block"], int):
layers_per_block = config["layers_per_block"]
block_id = (i - 1) // (layers_per_block + 1)
layer_in_block_id = (i - 1) % (layers_per_block + 1)
else:
block_id = next(k for k, n in enumerate(layers_per_block_cumsum) if (i - 1) < n)
passed_blocks = layers_per_block_cumsum[block_id - 1] if block_id > 0 else 0
layer_in_block_id = (i - 1) - passed_blocks
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
paths = renew_resnet_paths(resnets)
block_type = config["down_block_types"][block_id]
if (
block_type == "ResnetDownsampleBlock2D" or block_type == "SimpleCrossAttnDownBlock2D"
) and i in downsampler_ids:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.downsamplers.0"}
else:
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
old_path = f"input_blocks.{i}.1"
new_path = f"down_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(attentions)
meta_path = {"old": old_path, "new": new_path}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
old_path = "middle_block.1"
new_path = "mid_block.attentions.0"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if not isinstance(config["layers_per_block"], int):
layers_per_block_list = list(reversed([e + 1 for e in config["layers_per_block"]]))
layers_per_block_cumsum = list(np.cumsum(layers_per_block_list))
for i in range(num_output_blocks):
if isinstance(config["layers_per_block"], int):
layers_per_block = config["layers_per_block"]
block_id = i // (layers_per_block + 1)
layer_in_block_id = i % (layers_per_block + 1)
else:
block_id = next(k for k, n in enumerate(layers_per_block_cumsum) if i < n)
passed_blocks = layers_per_block_cumsum[block_id - 1] if block_id > 0 else 0
layer_in_block_id = i - passed_blocks
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
# len(output_block_list) == 1 -> resnet
# len(output_block_list) == 2 -> resnet, attention or resnet, upscale resnet
# len(output_block_list) == 3 -> resnet, attention, upscale resnet
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
has_attention = True
if len(output_block_list) == 2 and any("in_layers" in k for k in output_block_list["1"]):
has_attention = False
maybe_attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# this layer was no attention
has_attention = False
maybe_attentions = []
if has_attention:
old_path = f"output_blocks.{i}.1"
new_path = f"up_blocks.{block_id}.attentions.{layer_in_block_id}"
assign_attention_to_checkpoint(
new_checkpoint=new_checkpoint,
unet_state_dict=unet_state_dict,
old_path=old_path,
new_path=new_path,
config=config,
)
paths = renew_attention_paths(maybe_attentions)
meta_path = {
"old": old_path,
"new": new_path,
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(output_block_list) == 3 or (not has_attention and len(maybe_attentions) > 0):
layer_id = len(output_block_list) - 1
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.{layer_id}" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.{layer_id}", "new": f"up_blocks.{block_id}.upsamplers.0"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def verify_param_count(orig_path, unet_diffusers_config):
if "-II-" in orig_path:
from deepfloyd_if.modules import IFStageII
if_II = IFStageII(device="cpu", dir_or_name=orig_path)
elif "-III-" in orig_path:
from deepfloyd_if.modules import IFStageIII
if_II = IFStageIII(device="cpu", dir_or_name=orig_path)
else:
assert f"Weird name. Should have -II- or -III- in path: {orig_path}"
unet = UNet2DConditionModel(**unet_diffusers_config)
# in params
assert_param_count(unet.time_embedding, if_II.model.time_embed)
assert_param_count(unet.conv_in, if_II.model.input_blocks[:1])
# downblocks
assert_param_count(unet.down_blocks[0], if_II.model.input_blocks[1:4])
assert_param_count(unet.down_blocks[1], if_II.model.input_blocks[4:7])
assert_param_count(unet.down_blocks[2], if_II.model.input_blocks[7:11])
if "-II-" in orig_path:
assert_param_count(unet.down_blocks[3], if_II.model.input_blocks[11:17])
assert_param_count(unet.down_blocks[4], if_II.model.input_blocks[17:])
if "-III-" in orig_path:
assert_param_count(unet.down_blocks[3], if_II.model.input_blocks[11:15])
assert_param_count(unet.down_blocks[4], if_II.model.input_blocks[15:20])
assert_param_count(unet.down_blocks[5], if_II.model.input_blocks[20:])
# mid block
assert_param_count(unet.mid_block, if_II.model.middle_block)
# up block
if "-II-" in orig_path:
assert_param_count(unet.up_blocks[0], if_II.model.output_blocks[:6])
assert_param_count(unet.up_blocks[1], if_II.model.output_blocks[6:12])
assert_param_count(unet.up_blocks[2], if_II.model.output_blocks[12:16])
assert_param_count(unet.up_blocks[3], if_II.model.output_blocks[16:19])
assert_param_count(unet.up_blocks[4], if_II.model.output_blocks[19:])
if "-III-" in orig_path:
assert_param_count(unet.up_blocks[0], if_II.model.output_blocks[:5])
assert_param_count(unet.up_blocks[1], if_II.model.output_blocks[5:10])
assert_param_count(unet.up_blocks[2], if_II.model.output_blocks[10:14])
assert_param_count(unet.up_blocks[3], if_II.model.output_blocks[14:18])
assert_param_count(unet.up_blocks[4], if_II.model.output_blocks[18:21])
assert_param_count(unet.up_blocks[5], if_II.model.output_blocks[21:24])
# out params
assert_param_count(unet.conv_norm_out, if_II.model.out[0])
assert_param_count(unet.conv_out, if_II.model.out[2])
# make sure all model architecture has same param count
assert_param_count(unet, if_II.model)
def assert_param_count(model_1, model_2):
count_1 = sum(p.numel() for p in model_1.parameters())
count_2 = sum(p.numel() for p in model_2.parameters())
assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
def superres_check_against_original(dump_path, unet_checkpoint_path):
model_path = dump_path
model = UNet2DConditionModel.from_pretrained(model_path)
model.to("cuda")
orig_path = unet_checkpoint_path
if "-II-" in orig_path:
from deepfloyd_if.modules import IFStageII
if_II_model = IFStageII(device="cuda", dir_or_name=orig_path, model_kwargs={"precision": "fp32"}).model
elif "-III-" in orig_path:
from deepfloyd_if.modules import IFStageIII
if_II_model = IFStageIII(device="cuda", dir_or_name=orig_path, model_kwargs={"precision": "fp32"}).model
batch_size = 1
channels = model.config.in_channels // 2
height = model.config.sample_size
width = model.config.sample_size
height = 1024
width = 1024
torch.manual_seed(0)
latents = torch.randn((batch_size, channels, height, width), device=model.device)
image_small = torch.randn((batch_size, channels, height // 4, width // 4), device=model.device)
interpolate_antialias = {}
if "antialias" in inspect.signature(F.interpolate).parameters:
interpolate_antialias["antialias"] = True
image_upscaled = F.interpolate(
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
)
latent_model_input = torch.cat([latents, image_upscaled], dim=1).to(model.dtype)
t = torch.tensor([5], device=model.device).to(model.dtype)
seq_len = 64
encoder_hidden_states = torch.randn((batch_size, seq_len, model.config.encoder_hid_dim), device=model.device).to(
model.dtype
)
fake_class_labels = torch.tensor([t], device=model.device).to(model.dtype)
with torch.no_grad():
out = if_II_model(latent_model_input, t, aug_steps=fake_class_labels, text_emb=encoder_hidden_states)
if_II_model.to("cpu")
del if_II_model
import gc
torch.cuda.empty_cache()
gc.collect()
print(50 * "=")
with torch.no_grad():
noise_pred = model(
sample=latent_model_input,
encoder_hidden_states=encoder_hidden_states,
class_labels=fake_class_labels,
timestep=t,
).sample
print("Out shape", noise_pred.shape)
print("Diff", (out - noise_pred).abs().sum())
if __name__ == "__main__":
main(parse_args())
|