Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
import torch.nn.functional as F | |
import torch | |
import os | |
import torch.nn as nn | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import BertTokenizerFast as BertTokenizer, AutoModelForSequenceClassification, AutoTokenizer,AutoModel,BertModel, AdamW, get_linear_schedule_with_warmup | |
import pytorch_lightning as pl | |
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping | |
from pytorch_lightning.loggers import TensorBoardLogger | |
import streamlit as st | |
import torchmetrics | |
pwd = os.path.dirname(__file__) | |
MODEL_PATH = os.path.join(pwd,"data.pt") | |
print(MODEL_PATH) | |
BERT_MODEL_NAME = 'albert-base-v1' | |
tokenizer = AutoTokenizer.from_pretrained(BERT_MODEL_NAME) | |
class MeshNetwork(pl.LightningModule): | |
def __init__(self): | |
super().__init__() | |
self.bert = AutoModelForSequenceClassification.from_pretrained(BERT_MODEL_NAME, num_labels=13,return_dict=True) | |
self.criterion = F.cross_entropy | |
def forward(self, input_ids, attention_mask): | |
output = self.bert(input_ids=input_ids, attention_mask=attention_mask) | |
return output.logits | |
def training_step(self, batch, batch_idx): | |
input_ids = batch["input_ids"] | |
attention_mask = batch["attention_mask"] | |
y = batch['labels'] | |
y_hat = self.forward(input_ids, attention_mask) | |
loss = self.criterion(y_hat, y) | |
# Calculate acc | |
predictions = F.softmax(y_hat, dim=1).argmax(dim=1) | |
acc = torchmetrics.functional.accuracy(predictions, y) | |
self.log("train_acc", acc, on_step=False,prog_bar=True, on_epoch=True, logger=True) | |
self.log("train_loss", loss, prog_bar=True, on_epoch=True, logger=True) | |
return {"loss": loss, "predictions": y_hat, "labels": y} | |
def validation_step(self, batch, batch_idx): | |
input_ids = batch["input_ids"] | |
attention_mask = batch["attention_mask"] | |
y = batch["labels"] | |
y_hat = self.forward(input_ids, attention_mask) | |
loss = self.criterion(y_hat, y) | |
predictions = F.softmax(y_hat, dim=1).argmax(dim=1) | |
acc = torchmetrics.functional.accuracy(predictions, y) | |
self.log("val_acc", acc, prog_bar=True, on_step = False,on_epoch=True, logger=True) | |
self.log("val_loss", loss, prog_bar=True, on_epoch = True, logger=True) | |
def test_step(self, batch, batch_idx): | |
input_ids = batch["input_ids"] | |
attention_mask = batch["attention_mask"] | |
y = batch["labels"] | |
y_hat = self.forward(input_ids, attention_mask) | |
loss = self.criterion(y_hat, y) | |
predictions = F.softmax(y_hat, dim=1).argmax(dim=1) | |
acc = torchmetrics.functional.accuracy(predictions, y) | |
self.log("test_acc", acc, prog_bar=True, on_step=False,on_epoch=True, logger=True) | |
self.log("test_loss", loss, prog_bar=True, on_epoch = True, logger=True) | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam(params = self.parameters()) | |
return optimizer | |
st.title("MeSH Classify") | |
model = MeshNetwork() | |
with st.spinner("Loading model..."): | |
model.load_state_dict(torch.load(MODEL_PATH)) | |
model.eval() | |
print(model) | |
st.success("Model loaded.") | |
user_input = st.text_input("Enter text to be classified.") | |
st.write("Check MeSH categories: [link](https://www.ncbi.nlm.nih.gov/mesh/1000048)") | |
st.markdown("***") | |
if st.button("Classify Text"): | |
if user_input: | |
encoding = tokenizer.encode_plus( | |
user_input, | |
add_special_tokens=True, | |
return_token_type_ids=False, | |
padding="max_length", | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors='pt', | |
) | |
input_ids=encoding["input_ids"].flatten() | |
attention_mask=encoding["attention_mask"].flatten() | |
y_hat = model(input_ids=input_ids.reshape(-1, 512),attention_mask = attention_mask.reshape(-1, 512)) | |
prob = F.softmax(y_hat, dim=1) | |
probs = prob.detach().numpy() | |
st.table(probs) | |
predictions = prob.argmax(dim=1) | |
st.write(predictions.detach().numpy()) | |