Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
from functools import partial | |
tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_llama3_8b") | |
model = AutoModelForCausalLM.from_pretrained("IlyaGusev/saiga_llama3_8b", torch_dtype=torch.bfloat16) | |
model = model | |
def transform_history(history): | |
transformed_history = [] | |
for qa_pair in history: | |
transformed_history.append({"role": "user", "content": qa_pair[0]}) | |
transformed_history.append({"role": "assistant", "content": qa_pair[1]}) | |
return transformed_history | |
def predict(message, history): | |
# print(history) [[вопрос1, ответ1], [вопрос2, ответ2]...] | |
history = transform_history(history) | |
history_transformer_format = history + [{"role": "user", "content": message}, | |
{"role": "assistant", "content": ""}] | |
model_inputs = tokenizer.apply_chat_template(history_transformer_format, return_tensors="pt") | |
streamer = TextIteratorStreamer(tokenizer, timeout=120, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=1.0, | |
num_beams=1, | |
) | |
generating_func = partial(model.generate, model_inputs) | |
t = Thread(target=generating_func, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if 'assistant' not in new_token: | |
partial_message += new_token | |
yield partial_message | |
gr.ChatInterface(predict).launch(share=True) | |