Spaces:
Sleeping
Sleeping
File size: 2,597 Bytes
66f2e72 97a95ad e1a7c4f 5d34f4c d56046c e1a7c4f 66f2e72 5d34f4c 66f2e72 97a95ad 3e27d5b 5d34f4c 66f2e72 5d34f4c 66f2e72 d56046c 66f2e72 5d34f4c 4223326 5d34f4c e1a7c4f 4223326 66f2e72 e1a7c4f 66f2e72 3e27d5b e1a7c4f 66f2e72 e1a7c4f 4223326 3e27d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import streamlit as st
import os
from streamlit_chat import message
from langchain.prompts import PromptTemplate
from langchain import LLMChain
from langchain_community.llms.huggingface_hub import HuggingFaceHub
llm = HuggingFaceHub(repo_id="suriya7/MaxMini-Instruct-248M",
task ='text2text-generation',
huggingfacehub_api_token=os.getenv('HF_TOKEN'),
model_kwargs={
"do_sample":True,
"max_new_tokens":250
})
template = """You are a friendly chatbot called "MAXMINI" who give clear an well having a conversation with a human and you are created by suriya an AI Enthusiastic.
previous chat:
{chat_history}
User:
{question}
Chatbot:"""
prompt = PromptTemplate(template=template,input_variables=['question','chat_history'])
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
)
previous_response = ""
def conversational_chat(user_query):
global previous_response
previous_response = "".join([f"User: {i[0]}\nChatbot: {i[1]}" for i in st.session_state['history'] if i is not None])
print(f"this is my previous {previous_response}")
result = llm_chain.predict(
question=user_query,
chat_history = previous_response
)
st.session_state['history'].append((user_query, result))
return result
st.title("Chat Bot MaxMini:")
st.text("I am MaxMini Your Friendly Assitant")
st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)")
if 'history' not in st.session_state:
st.session_state['history'] = []
if 'human' not in st.session_state:
st.session_state['human'] = ["Hello MaxMini"]
if 'assistant' not in st.session_state:
st.session_state['assistant'] = ['Hey There! How Can I Assist You']
# Create containers for chat history and user input
response_container = st.container()
container = st.container()
# User input form
user_input = st.chat_input("Ask Your Questions 👉..")
with container:
if user_input:
output = conversational_chat(user_input)
# answer = response_generator(output)
st.session_state['human'].append(user_input)
st.session_state['assistant'].append(output)
# Display chat history
if st.session_state['assistant']:
with response_container:
for i in range(len(st.session_state['assistant'])):
message(st.session_state["human"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer")
message(st.session_state["assistant"][i], key=str(i), avatar_style="bottts") |