File size: 42,425 Bytes
60616b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"torch.cuda.is_available()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import glob\n",
"import math\n",
"import sys\n",
"import time\n",
"from pathlib import Path\n",
"from typing import Optional, Tuple, Union\n",
"\n",
"import lightning as L\n",
"import torch\n",
"from lightning.fabric.loggers import CSVLogger\n",
"from lightning.fabric.strategies import FSDPStrategy\n",
"from torch.utils.data import DataLoader\n",
"\n",
"# # support running without installing as a package\n",
"# wd = Path(__file__).parent.parent.resolve()\n",
"# sys.path.append(str(wd))\n",
"\n",
"from tsai_gpt.model import GPT, Block, Config\n",
"from tsai_gpt.packed_dataset import CombinedDataset, PackedDataset\n",
"from tsai_gpt.speed_monitor import SpeedMonitorBase, estimate_flops, measure_flops\n",
"from tsai_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor\n",
"from tsai_gpt.utils import chunked_cross_entropy, get_default_supported_precision, num_parameters, load_checkpoint"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"model_name = \"pythia-160m\"\n",
"name = \"redpajama\"\n",
"out_dir = Path(\"out\") / name\n",
"save_interval = 1000\n",
"eval_interval = 1000\n",
"eval_iters = 100\n",
"log_interval = 100"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Hyperparameters\n",
"learning_rate = 6e-3\n",
"batch_size = 32\n",
"micro_batch_size = 8\n",
"gradient_accumulation_steps = batch_size // micro_batch_size\n",
"assert gradient_accumulation_steps > 0\n",
"#max_iters = 600000 # num_epochs * (epoch_size // micro_batch_size) // devices\n",
"max_iters = 15000\n",
"weight_decay = 1e-1\n",
"beta1 = 0.9\n",
"beta2 = 0.95\n",
"grad_clip = 1.0\n",
"decay_lr = True\n",
"warmup_iters = 2000\n",
"lr_decay_iters = max_iters\n",
"min_lr = 6e-6"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Data proportions from https://arxiv.org/pdf/2302.13971.pdf Table 1\n",
"data_config = [\n",
" (\"arxiv\", 2.5),\n",
" (\"book\", 4.5),\n",
" (\"c4\", 15.0),\n",
" (\"cc\", 67.0),\n",
" (\"github\", 4.5),\n",
" (\"stackexchange\", 2.0),\n",
" (\"wikipedia\", 4.5),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith(\"_\")}\n",
"logger = CSVLogger(\"out\", name, flush_logs_every_n_steps=log_interval)\n",
"\n",
"\n",
"def setup(\n",
" devices: int = 4,\n",
" train_data_dir: Path = Path(\"data/redpajama_sample\"),\n",
" val_data_dir: Optional[Path] = None,\n",
" precision: Optional[str] = None,\n",
" resume: Union[bool, Path] = False,\n",
") -> None:\n",
" precision = precision or get_default_supported_precision(training=True)\n",
"\n",
" if devices > 1:\n",
" strategy = FSDPStrategy(\n",
" auto_wrap_policy={Block},\n",
" activation_checkpointing_policy={Block},\n",
" state_dict_type=\"full\",\n",
" limit_all_gathers=True,\n",
" cpu_offload=False,\n",
" )\n",
" else:\n",
" strategy = \"auto\"\n",
"\n",
" fabric = L.Fabric(devices=devices, strategy=strategy, precision=precision, loggers=logger)\n",
" fabric.print(hparams)\n",
" fabric.launch(main, train_data_dir, val_data_dir, resume)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"model_copy = None"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def main(fabric: L.Fabric, train_data_dir: Path, val_data_dir: Path, resume: Union[bool, Path]) -> None:\n",
" global model_copy\n",
" speed_monitor = SpeedMonitor(fabric, window_size=50, time_unit=\"seconds\")\n",
"\n",
" if fabric.global_rank == 0:\n",
" out_dir.mkdir(parents=True, exist_ok=True)\n",
"\n",
" config = Config.from_name(model_name)\n",
"\n",
" train_dataloader, val_dataloader = create_dataloaders(\n",
" batch_size=micro_batch_size,\n",
" block_size=config.block_size,\n",
" fabric=fabric,\n",
" train_data_dir=train_data_dir,\n",
" val_data_dir=val_data_dir,\n",
" seed=(1337 + fabric.global_rank),\n",
" )\n",
" if val_dataloader is None:\n",
" train_dataloader = fabric.setup_dataloaders(train_dataloader)\n",
" else:\n",
" train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader)\n",
"\n",
" fabric.seed_everything(1337) # same seed for every process to init model (FSDP)\n",
"\n",
" fabric.print(f\"Loading model with {config.__dict__}\")\n",
" t0 = time.perf_counter()\n",
" import torch\n",
" import torch.nn as nn\n",
" def _init_weights(module: nn.Module) -> None:\n",
" \"\"\"Meant to be used with `gpt.apply(gpt._init_weights)`.\"\"\"\n",
" if isinstance(module, nn.Linear):\n",
" torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)\n",
" if module.bias is not None:\n",
" torch.nn.init.zeros_(module.bias)\n",
" elif isinstance(module, nn.Embedding):\n",
" torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)\n",
" \n",
" with fabric.init_module(empty_init=True):\n",
" model = GPT(config)\n",
" model.apply(_init_weights)\n",
" model.apply(_init_weights)\n",
"\n",
" \n",
" # checkpoint_path = Path(\"out/redpajama/iter-000999-ckpt.pth\")\n",
"\n",
" # load_checkpoint(fabric, model, checkpoint_path)\n",
" \n",
" # print(model.transformer.h[0].mlp.fc.weight)\n",
"\n",
" fabric.print(f\"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.\")\n",
" fabric.print(f\"Total parameters {num_parameters(model):,}\")\n",
"\n",
" model = fabric.setup(model)\n",
" optimizer = torch.optim.AdamW(\n",
" model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas=(beta1, beta2), foreach=False\n",
" )\n",
"\n",
" # model_copy = model\n",
"\n",
" optimizer = fabric.setup_optimizers(optimizer)\n",
"\n",
" state = {\"model\": model, \"optimizer\": optimizer, \"hparams\": hparams, \"iter_num\": 0, \"step_count\": 0}\n",
"\n",
" if resume is True:\n",
" resume = max(out_dir.glob(\"*.pth\"), key=lambda p: int(p.name.split(\"-\")[1]))\n",
" if resume:\n",
" fabric.print(f\"Resuming training from {resume}\")\n",
" fabric.load(resume, state)\n",
"\n",
" train_time = time.perf_counter()\n",
" train(fabric, state, train_dataloader, val_dataloader, speed_monitor)\n",
" fabric.print(f\"Training time: {(time.perf_counter()-train_time):.2f}s\")\n",
" if fabric.device.type == \"cuda\":\n",
" fabric.print(f\"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def train(\n",
" fabric: L.Fabric,\n",
" state: dict,\n",
" train_dataloader: DataLoader,\n",
" val_dataloader: DataLoader,\n",
" speed_monitor: SpeedMonitorBase,\n",
") -> None:\n",
" model = state[\"model\"]\n",
" optimizer = state[\"optimizer\"]\n",
"\n",
" if val_dataloader is not None:\n",
" validate(fabric, model, val_dataloader) # sanity check\n",
"\n",
" with torch.device(\"meta\"):\n",
" meta_model = GPT(model.config)\n",
" # \"estimated\" is not as precise as \"measured\". Estimated is optimistic but widely used in the wild.\n",
" # When comparing MFU or FLOP numbers with other projects that use estimated FLOPs,\n",
" # consider passing `SpeedMonitor(flops_per_batch=estimated_flops)` instead\n",
" estimated_flops = estimate_flops(meta_model) * micro_batch_size\n",
" fabric.print(f\"Estimated TFLOPs: {estimated_flops * fabric.world_size / 1e12:.2f}\")\n",
" x = torch.randint(0, 1, (micro_batch_size, model.max_seq_length))\n",
" measured_flops = measure_flops(meta_model, x)\n",
" fabric.print(f\"Measured TFLOPs: {measured_flops * fabric.world_size / 1e12:.2f}\")\n",
" del meta_model, x\n",
"\n",
" total_lengths = 0\n",
" total_t0 = time.perf_counter()\n",
"\n",
" for state[\"iter_num\"], train_data in enumerate(train_dataloader, state[\"iter_num\"]):\n",
" if state[\"iter_num\"] >= max_iters:\n",
" checkpoint_path = out_dir / f\"iter-{state['iter_num']:06d}-ckpt.pth\"\n",
" fabric.print(f\"Saving checkpoint to {str(checkpoint_path)!r}\")\n",
" fabric.save(checkpoint_path, state)\n",
" break\n",
"\n",
" # determine and set the learning rate for this iteration\n",
" lr = get_lr(state[\"iter_num\"]) if decay_lr else learning_rate\n",
" for param_group in optimizer.param_groups:\n",
" param_group[\"lr\"] = lr\n",
"\n",
" iter_t0 = time.perf_counter()\n",
"\n",
" input_ids = train_data[:, 0 : model.max_seq_length].contiguous()\n",
" targets = train_data[:, 1 : model.max_seq_length + 1].contiguous()\n",
"\n",
" is_accumulating = (state[\"iter_num\"] + 1) % gradient_accumulation_steps != 0\n",
" with fabric.no_backward_sync(model, enabled=is_accumulating):\n",
" logits = model(input_ids)\n",
" loss = chunked_cross_entropy(logits, targets, chunk_size=0)\n",
" fabric.backward(loss / gradient_accumulation_steps)\n",
" \n",
" # return \n",
"\n",
" if not is_accumulating:\n",
" fabric.clip_gradients(model, optimizer, max_norm=grad_clip)\n",
" optimizer.step()\n",
" optimizer.zero_grad()\n",
" state[\"step_count\"] += 1\n",
"\n",
" t1 = time.perf_counter()\n",
" total_lengths += input_ids.size(1)\n",
" speed_monitor.on_train_batch_end(\n",
" (state[\"iter_num\"] + 1) * micro_batch_size,\n",
" t1 - total_t0,\n",
" # this assumes that device FLOPs are the same and that all devices have the same batch size\n",
" fabric.world_size,\n",
" flops_per_batch=measured_flops,\n",
" lengths=total_lengths,\n",
" )\n",
" if state[\"iter_num\"] % log_interval == 0:\n",
" fabric.print(\n",
" f\"iter {state['iter_num']} step {state['step_count']}: loss {loss.item():.4f}, LR: {lr:.6f}, iter time:\"\n",
" f\" {(t1 - iter_t0) * 1000:.2f}ms{' (optimizer.step)' if not is_accumulating else ''}\"\n",
" )\n",
"\n",
" if val_dataloader is not None and not is_accumulating and state[\"step_count\"] % eval_interval == 0:\n",
" t0 = time.perf_counter()\n",
" val_loss = validate(fabric, model, val_dataloader)\n",
" t1 = time.perf_counter() - t0\n",
" speed_monitor.eval_end(t1)\n",
" fabric.print(f\"step {state['iter_num']}: val loss {val_loss.item():.4f}, val time: {t1 * 1000:.2f}ms\")\n",
" fabric.barrier()\n",
" if not is_accumulating and state[\"step_count\"] % save_interval == 0:\n",
" checkpoint_path = out_dir / f\"iter-{state['iter_num']:06d}-ckpt.pth\"\n",
" fabric.print(f\"Saving checkpoint to {str(checkpoint_path)!r}\")\n",
" fabric.save(checkpoint_path, state)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"@torch.inference_mode()\n",
"def validate(fabric: L.Fabric, model: torch.nn.Module, val_dataloader: DataLoader) -> torch.Tensor:\n",
" fabric.print(\"Validating ...\")\n",
" model.eval()\n",
"\n",
" losses = torch.zeros(eval_iters, device=fabric.device)\n",
" for k, val_data in enumerate(val_dataloader):\n",
" input_ids = val_data[:, 0 : model.max_seq_length].contiguous()\n",
" targets = val_data[:, 1 : model.max_seq_length + 1].contiguous()\n",
" logits = model(input_ids)\n",
" losses[k] = chunked_cross_entropy(logits, targets, chunk_size=0)\n",
" out = losses.mean()\n",
"\n",
" model.train()\n",
" return out"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"def create_dataloader(\n",
" batch_size: int, block_size: int, data_dir: Path, fabric: L.Fabric, shuffle: bool = True, seed: int = 12345\n",
") -> DataLoader:\n",
" datasets = []\n",
" for prefix, _ in data_config:\n",
" filenames = glob.glob(str(data_dir / f\"{prefix}*\"))\n",
" dataset = PackedDataset(\n",
" filenames,\n",
" n_chunks=4,\n",
" block_size=block_size,\n",
" shuffle=shuffle,\n",
" seed=seed,\n",
" num_processes=fabric.world_size,\n",
" process_rank=fabric.global_rank,\n",
" )\n",
" datasets.append(dataset)\n",
"\n",
" if not datasets:\n",
" raise RuntimeError(\n",
" f\"No data found at {data_dir}. Make sure you ran prepare_redpajama.py to create the dataset.\"\n",
" )\n",
"\n",
" weights = [weight for _, weight in data_config]\n",
" sum_weights = sum(weights)\n",
" weights = [el / sum_weights for el in weights]\n",
"\n",
" combined_dataset = CombinedDataset(datasets=datasets, seed=seed, weights=weights)\n",
"\n",
" return DataLoader(combined_dataset, batch_size=batch_size, shuffle=False, pin_memory=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"def create_dataloaders(\n",
" batch_size: int,\n",
" block_size: int,\n",
" fabric: L.Fabric,\n",
" train_data_dir: Path = Path(\"data/redpajama_sample\"),\n",
" val_data_dir: Optional[Path] = None,\n",
" seed: int = 12345,\n",
") -> Tuple[DataLoader, DataLoader]:\n",
" # Increase by one because we need the next word as well\n",
" effective_block_size = block_size + 1\n",
" train_dataloader = create_dataloader(\n",
" batch_size=batch_size,\n",
" block_size=effective_block_size,\n",
" fabric=fabric,\n",
" data_dir=train_data_dir,\n",
" shuffle=True,\n",
" seed=seed,\n",
" )\n",
" val_dataloader = (\n",
" create_dataloader(\n",
" batch_size=batch_size,\n",
" block_size=effective_block_size,\n",
" fabric=fabric,\n",
" data_dir=val_data_dir,\n",
" shuffle=False,\n",
" seed=seed,\n",
" )\n",
" if val_data_dir\n",
" else None\n",
" )\n",
" return train_dataloader, val_dataloader"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"def get_lr(it: int) -> float:\n",
" # 1) linear warmup for warmup_iters steps\n",
" if it < warmup_iters:\n",
" return learning_rate * it / warmup_iters\n",
" # 2) if it > lr_decay_iters, return min learning rate\n",
" if it > lr_decay_iters:\n",
" return min_lr\n",
" # 3) in between, use cosine decay down to min learning rate\n",
" decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)\n",
" assert 0 <= decay_ratio <= 1\n",
" coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1\n",
" return min_lr + coeff * (learning_rate - min_lr)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using bfloat16 Automatic Mixed Precision (AMP)\n",
"Seed set to 1337\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'model_name': 'pythia-160m', 'name': 'redpajama', 'save_interval': 1000, 'eval_interval': 1000, 'eval_iters': 100, 'log_interval': 100, 'learning_rate': 0.006, 'batch_size': 32, 'micro_batch_size': 8, 'gradient_accumulation_steps': 4, 'max_iters': 15000, 'weight_decay': 0.1, 'beta1': 0.9, 'beta2': 0.95, 'grad_clip': 1.0, 'decay_lr': True, 'warmup_iters': 2000, 'lr_decay_iters': 15000, 'min_lr': 6e-06}\n",
"Loading model with {'name': 'pythia-160m', 'hf_config': {'org': 'EleutherAI', 'name': 'pythia-160m-deduped'}, 'block_size': 2048, 'vocab_size': 50254, 'padding_multiple': 128, 'padded_vocab_size': 50304, 'n_layer': 12, 'n_head': 12, 'n_embd': 768, 'rotary_percentage': 0.25, 'parallel_residual': True, 'bias': True, 'lm_head_bias': False, 'n_query_groups': 12, 'shared_attention_norm': False, '_norm_class': 'LayerNorm', 'norm_eps': 1e-05, '_mlp_class': 'GptNeoxMLP', 'gelu_approximate': 'none', 'intermediate_size': 3072, 'rope_condense_ratio': 1, 'rope_base': 10000, 'head_size': 64, 'rope_n_elem': 16}\n",
"Time to instantiate model: 0.03 seconds.\n",
"Total parameters 162,322,944\n",
"Estimated TFLOPs: 22.14\n",
"Measured TFLOPs: 15.86\n",
"iter 0 step 0: loss 10.9790, LR: 0.000000, iter time: 993.87ms\n",
"iter 100 step 25: loss 7.3972, LR: 0.000300, iter time: 56.71ms\n",
"iter 200 step 50: loss 5.9952, LR: 0.000600, iter time: 50.39ms\n",
"iter 300 step 75: loss 5.8594, LR: 0.000900, iter time: 50.64ms\n",
"iter 400 step 100: loss 6.0047, LR: 0.001200, iter time: 56.22ms\n",
"iter 500 step 125: loss 5.9611, LR: 0.001500, iter time: 55.67ms\n",
"iter 600 step 150: loss 5.7425, LR: 0.001800, iter time: 56.04ms\n",
"iter 700 step 175: loss 5.6345, LR: 0.002100, iter time: 56.77ms\n",
"iter 800 step 200: loss 5.4736, LR: 0.002400, iter time: 56.59ms\n",
"iter 900 step 225: loss 5.3942, LR: 0.002700, iter time: 55.94ms\n",
"iter 1000 step 250: loss 5.3758, LR: 0.003000, iter time: 55.97ms\n",
"iter 1100 step 275: loss 5.4347, LR: 0.003300, iter time: 50.85ms\n",
"iter 1200 step 300: loss 5.6140, LR: 0.003600, iter time: 55.73ms\n",
"iter 1300 step 325: loss 5.1840, LR: 0.003900, iter time: 50.78ms\n",
"iter 1400 step 350: loss 5.5744, LR: 0.004200, iter time: 55.55ms\n",
"iter 1500 step 375: loss 4.8744, LR: 0.004500, iter time: 56.58ms\n",
"iter 1600 step 400: loss 5.2784, LR: 0.004800, iter time: 56.40ms\n",
"iter 1700 step 425: loss 4.6915, LR: 0.005100, iter time: 56.13ms\n",
"iter 1800 step 450: loss 5.1188, LR: 0.005400, iter time: 51.62ms\n",
"iter 1900 step 475: loss 5.1236, LR: 0.005700, iter time: 54.36ms\n",
"iter 2000 step 500: loss 4.8566, LR: 0.006000, iter time: 56.13ms\n",
"iter 2100 step 525: loss 4.7733, LR: 0.005999, iter time: 56.35ms\n",
"iter 2200 step 550: loss 4.8778, LR: 0.005997, iter time: 50.88ms\n",
"iter 2300 step 575: loss 4.4962, LR: 0.005992, iter time: 56.58ms\n",
"iter 2400 step 600: loss 4.7976, LR: 0.005986, iter time: 55.87ms\n",
"iter 2500 step 625: loss 4.3805, LR: 0.005978, iter time: 57.95ms\n",
"iter 2600 step 650: loss 4.5287, LR: 0.005969, iter time: 59.25ms\n",
"iter 2700 step 675: loss 4.3517, LR: 0.005957, iter time: 52.44ms\n",
"iter 2800 step 700: loss 4.6585, LR: 0.005944, iter time: 51.33ms\n",
"iter 2900 step 725: loss 4.4335, LR: 0.005929, iter time: 58.50ms\n",
"iter 3000 step 750: loss 4.4874, LR: 0.005913, iter time: 57.96ms\n",
"iter 3100 step 775: loss 4.3373, LR: 0.005895, iter time: 57.91ms\n",
"iter 3200 step 800: loss 4.1922, LR: 0.005875, iter time: 56.81ms\n",
"iter 3300 step 825: loss 4.5304, LR: 0.005853, iter time: 57.85ms\n",
"iter 3400 step 850: loss 4.1766, LR: 0.005830, iter time: 58.52ms\n",
"iter 3500 step 875: loss 4.2740, LR: 0.005805, iter time: 57.50ms\n",
"iter 3600 step 900: loss 4.2820, LR: 0.005779, iter time: 58.88ms\n",
"iter 3700 step 925: loss 4.2292, LR: 0.005751, iter time: 57.29ms\n",
"iter 3800 step 950: loss 4.4272, LR: 0.005721, iter time: 51.97ms\n",
"iter 3900 step 975: loss 4.2242, LR: 0.005690, iter time: 56.50ms\n",
"Saving checkpoint to 'out/redpajama/iter-003999-ckpt.pth'\n",
"iter 4000 step 1000: loss 4.2313, LR: 0.005657, iter time: 52.22ms\n",
"iter 4100 step 1025: loss 3.7856, LR: 0.005622, iter time: 58.16ms\n",
"iter 4200 step 1050: loss 3.6729, LR: 0.005586, iter time: 57.64ms\n",
"iter 4300 step 1075: loss 3.3938, LR: 0.005549, iter time: 57.79ms\n",
"iter 4400 step 1100: loss 4.0303, LR: 0.005510, iter time: 59.47ms\n",
"iter 4500 step 1125: loss 4.0657, LR: 0.005469, iter time: 57.41ms\n",
"iter 4600 step 1150: loss 4.1320, LR: 0.005428, iter time: 52.20ms\n",
"iter 4700 step 1175: loss 3.7960, LR: 0.005384, iter time: 58.86ms\n",
"iter 4800 step 1200: loss 4.2554, LR: 0.005340, iter time: 58.40ms\n",
"iter 4900 step 1225: loss 3.8772, LR: 0.005294, iter time: 56.95ms\n",
"iter 5000 step 1250: loss 3.6817, LR: 0.005246, iter time: 57.29ms\n",
"iter 5100 step 1275: loss 3.9250, LR: 0.005198, iter time: 57.37ms\n",
"iter 5200 step 1300: loss 4.3746, LR: 0.005148, iter time: 57.65ms\n",
"iter 5300 step 1325: loss 4.0608, LR: 0.005096, iter time: 56.79ms\n",
"iter 5400 step 1350: loss 4.0989, LR: 0.005044, iter time: 56.71ms\n",
"iter 5500 step 1375: loss 3.7373, LR: 0.004990, iter time: 56.18ms\n",
"iter 5600 step 1400: loss 3.7889, LR: 0.004936, iter time: 49.99ms\n",
"iter 5700 step 1425: loss 4.0925, LR: 0.004880, iter time: 54.77ms\n",
"iter 5800 step 1450: loss 3.8588, LR: 0.004823, iter time: 55.27ms\n",
"iter 5900 step 1475: loss 4.1029, LR: 0.004765, iter time: 50.15ms\n",
"iter 6000 step 1500: loss 3.7252, LR: 0.004705, iter time: 49.90ms\n",
"iter 6100 step 1525: loss 3.4831, LR: 0.004645, iter time: 55.53ms\n",
"iter 6200 step 1550: loss 3.9866, LR: 0.004584, iter time: 54.90ms\n",
"iter 6300 step 1575: loss 3.7148, LR: 0.004522, iter time: 55.46ms\n",
"iter 6400 step 1600: loss 3.5724, LR: 0.004459, iter time: 50.00ms\n",
"iter 6500 step 1625: loss 3.7567, LR: 0.004396, iter time: 55.14ms\n",
"iter 6600 step 1650: loss 3.6850, LR: 0.004331, iter time: 54.25ms\n",
"iter 6700 step 1675: loss 3.8028, LR: 0.004266, iter time: 54.40ms\n",
"iter 6800 step 1700: loss 3.8552, LR: 0.004200, iter time: 54.60ms\n",
"iter 6900 step 1725: loss 3.8593, LR: 0.004133, iter time: 54.42ms\n",
"iter 7000 step 1750: loss 3.9515, LR: 0.004066, iter time: 54.44ms\n",
"iter 7100 step 1775: loss 3.6975, LR: 0.003998, iter time: 49.42ms\n",
"iter 7200 step 1800: loss 3.8195, LR: 0.003929, iter time: 54.56ms\n",
"iter 7300 step 1825: loss 3.7486, LR: 0.003860, iter time: 49.36ms\n",
"iter 7400 step 1850: loss 3.8587, LR: 0.003790, iter time: 54.44ms\n",
"iter 7500 step 1875: loss 3.6892, LR: 0.003720, iter time: 51.14ms\n",
"iter 7600 step 1900: loss 3.1359, LR: 0.003650, iter time: 57.86ms\n",
"iter 7700 step 1925: loss 3.4292, LR: 0.003579, iter time: 56.81ms\n",
"iter 7800 step 1950: loss 3.4693, LR: 0.003508, iter time: 50.99ms\n",
"iter 7900 step 1975: loss 3.2231, LR: 0.003436, iter time: 56.80ms\n",
"Saving checkpoint to 'out/redpajama/iter-007999-ckpt.pth'\n",
"iter 8000 step 2000: loss 3.8785, LR: 0.003364, iter time: 50.98ms\n",
"iter 8100 step 2025: loss 3.3586, LR: 0.003292, iter time: 56.01ms\n",
"iter 8200 step 2050: loss 3.5540, LR: 0.003220, iter time: 69.23ms\n",
"iter 8300 step 2075: loss 3.5014, LR: 0.003148, iter time: 64.78ms\n",
"iter 8400 step 2100: loss 4.1081, LR: 0.003075, iter time: 64.00ms\n",
"iter 8500 step 2125: loss 3.4069, LR: 0.003003, iter time: 70.03ms\n",
"iter 8600 step 2150: loss 3.4040, LR: 0.002931, iter time: 50.92ms\n",
"iter 8700 step 2175: loss 3.6502, LR: 0.002858, iter time: 56.68ms\n",
"iter 8800 step 2200: loss 3.7889, LR: 0.002786, iter time: 51.22ms\n",
"iter 8900 step 2225: loss 3.5215, LR: 0.002714, iter time: 56.65ms\n",
"iter 9000 step 2250: loss 3.5122, LR: 0.002642, iter time: 56.33ms\n",
"iter 9100 step 2275: loss 3.2583, LR: 0.002570, iter time: 55.80ms\n",
"iter 9200 step 2300: loss 3.6411, LR: 0.002498, iter time: 50.97ms\n",
"iter 9300 step 2325: loss 3.3789, LR: 0.002427, iter time: 56.73ms\n",
"iter 9400 step 2350: loss 3.4600, LR: 0.002356, iter time: 56.51ms\n",
"iter 9500 step 2375: loss 3.5573, LR: 0.002286, iter time: 56.18ms\n",
"iter 9600 step 2400: loss 3.8386, LR: 0.002216, iter time: 56.41ms\n",
"iter 9700 step 2425: loss 3.6447, LR: 0.002146, iter time: 50.92ms\n",
"iter 9800 step 2450: loss 3.7056, LR: 0.002077, iter time: 56.08ms\n",
"iter 9900 step 2475: loss 3.6347, LR: 0.002008, iter time: 56.52ms\n",
"iter 10000 step 2500: loss 3.6540, LR: 0.001940, iter time: 56.33ms\n",
"iter 10100 step 2525: loss 2.9236, LR: 0.001873, iter time: 56.44ms\n",
"iter 10200 step 2550: loss 3.3438, LR: 0.001806, iter time: 56.55ms\n",
"iter 10300 step 2575: loss 2.8825, LR: 0.001740, iter time: 56.82ms\n",
"iter 10400 step 2600: loss 3.2412, LR: 0.001675, iter time: 56.60ms\n",
"iter 10500 step 2625: loss 3.7394, LR: 0.001610, iter time: 51.23ms\n",
"iter 10600 step 2650: loss 3.0055, LR: 0.001547, iter time: 56.51ms\n",
"iter 10700 step 2675: loss 3.0301, LR: 0.001484, iter time: 55.63ms\n",
"iter 10800 step 2700: loss 3.7498, LR: 0.001422, iter time: 56.42ms\n",
"iter 10900 step 2725: loss 3.3228, LR: 0.001361, iter time: 56.71ms\n",
"iter 11000 step 2750: loss 3.7291, LR: 0.001301, iter time: 56.78ms\n",
"iter 11100 step 2775: loss 3.2531, LR: 0.001241, iter time: 50.94ms\n",
"iter 11200 step 2800: loss 3.5005, LR: 0.001183, iter time: 51.03ms\n",
"iter 11300 step 2825: loss 3.6694, LR: 0.001126, iter time: 55.72ms\n",
"iter 11400 step 2850: loss 3.6801, LR: 0.001070, iter time: 56.28ms\n",
"iter 11500 step 2875: loss 3.5435, LR: 0.001016, iter time: 56.29ms\n",
"iter 11600 step 2900: loss 3.1989, LR: 0.000962, iter time: 56.46ms\n",
"iter 11700 step 2925: loss 3.7118, LR: 0.000910, iter time: 56.78ms\n",
"iter 11800 step 2950: loss 3.4840, LR: 0.000858, iter time: 56.68ms\n",
"iter 11900 step 2975: loss 3.3171, LR: 0.000808, iter time: 58.20ms\n",
"Saving checkpoint to 'out/redpajama/iter-011999-ckpt.pth'\n",
"iter 12000 step 3000: loss 3.4315, LR: 0.000760, iter time: 133.55ms\n",
"iter 12100 step 3025: loss 3.2361, LR: 0.000712, iter time: 50.96ms\n",
"iter 12200 step 3050: loss 3.2333, LR: 0.000666, iter time: 56.34ms\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb Cell 14\u001b[0m line \u001b[0;36m2\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a>\u001b[0m torch\u001b[39m.\u001b[39mset_float32_matmul_precision(\u001b[39m\"\u001b[39m\u001b[39mmedium\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m----> <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=1'>2</a>\u001b[0m setup(\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=2'>3</a>\u001b[0m devices\u001b[39m=\u001b[39;49m\u001b[39m1\u001b[39;49m,\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=3'>4</a>\u001b[0m \u001b[39m#train_data_dir=Path(\"data/lit-redpajama-sample\")\u001b[39;49;00m\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=4'>5</a>\u001b[0m train_data_dir\u001b[39m=\u001b[39;49mPath(\u001b[39m\"\u001b[39;49m\u001b[39m/home/raghu/work/data/redpajama/data/lit-redpajama-sample\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=5'>6</a>\u001b[0m )\n",
"\u001b[1;32m/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb Cell 14\u001b[0m line \u001b[0;36m2\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=24'>25</a>\u001b[0m fabric \u001b[39m=\u001b[39m L\u001b[39m.\u001b[39mFabric(devices\u001b[39m=\u001b[39mdevices, strategy\u001b[39m=\u001b[39mstrategy, precision\u001b[39m=\u001b[39mprecision, loggers\u001b[39m=\u001b[39mlogger)\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=25'>26</a>\u001b[0m fabric\u001b[39m.\u001b[39mprint(hparams)\n\u001b[0;32m---> <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=26'>27</a>\u001b[0m fabric\u001b[39m.\u001b[39;49mlaunch(main, train_data_dir, val_data_dir, resume)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/lightning/fabric/fabric.py:834\u001b[0m, in \u001b[0;36mFabric.launch\u001b[0;34m(self, function, *args, **kwargs)\u001b[0m\n\u001b[1;32m 829\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstrategy\u001b[39m.\u001b[39mlauncher, (_MultiProcessingLauncher, _XLALauncher)):\n\u001b[1;32m 830\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mTypeError\u001b[39;00m(\n\u001b[1;32m 831\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mTo use the `\u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtype\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstrategy)\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m` strategy, `.launch()` needs to be called with a function\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 832\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m that contains the code to launch in processes.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 833\u001b[0m )\n\u001b[0;32m--> 834\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_wrap_and_launch(function, \u001b[39mself\u001b[39;49m, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/lightning/fabric/fabric.py:920\u001b[0m, in \u001b[0;36mFabric._wrap_and_launch\u001b[0;34m(self, to_run, *args, **kwargs)\u001b[0m\n\u001b[1;32m 918\u001b[0m \u001b[39mif\u001b[39;00m (launcher \u001b[39m:=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_strategy\u001b[39m.\u001b[39mlauncher) \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 919\u001b[0m \u001b[39mreturn\u001b[39;00m launcher\u001b[39m.\u001b[39mlaunch(to_run, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m--> 920\u001b[0m \u001b[39mreturn\u001b[39;00m to_run(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/lightning/fabric/fabric.py:925\u001b[0m, in \u001b[0;36mFabric._wrap_with_setup\u001b[0;34m(self, to_run, *args, **kwargs)\u001b[0m\n\u001b[1;32m 923\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_strategy\u001b[39m.\u001b[39msetup_environment()\n\u001b[1;32m 924\u001b[0m \u001b[39mwith\u001b[39;00m _replace_dunder_methods(DataLoader, \u001b[39m\"\u001b[39m\u001b[39mdataset\u001b[39m\u001b[39m\"\u001b[39m), _replace_dunder_methods(BatchSampler):\n\u001b[0;32m--> 925\u001b[0m \u001b[39mreturn\u001b[39;00m to_run(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"\u001b[1;32m/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb Cell 14\u001b[0m line \u001b[0;36m7\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=67'>68</a>\u001b[0m fabric\u001b[39m.\u001b[39mload(resume, state)\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=69'>70</a>\u001b[0m train_time \u001b[39m=\u001b[39m time\u001b[39m.\u001b[39mperf_counter()\n\u001b[0;32m---> <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=70'>71</a>\u001b[0m train(fabric, state, train_dataloader, val_dataloader, speed_monitor)\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=71'>72</a>\u001b[0m fabric\u001b[39m.\u001b[39mprint(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mTraining time: \u001b[39m\u001b[39m{\u001b[39;00m(time\u001b[39m.\u001b[39mperf_counter()\u001b[39m-\u001b[39mtrain_time)\u001b[39m:\u001b[39;00m\u001b[39m.2f\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39ms\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=72'>73</a>\u001b[0m \u001b[39mif\u001b[39;00m fabric\u001b[39m.\u001b[39mdevice\u001b[39m.\u001b[39mtype \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mcuda\u001b[39m\u001b[39m\"\u001b[39m:\n",
"\u001b[1;32m/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb Cell 14\u001b[0m line \u001b[0;36m5\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=51'>52</a>\u001b[0m \u001b[39m# return \u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=53'>54</a>\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m is_accumulating:\n\u001b[0;32m---> <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=54'>55</a>\u001b[0m fabric\u001b[39m.\u001b[39;49mclip_gradients(model, optimizer, max_norm\u001b[39m=\u001b[39;49mgrad_clip)\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=55'>56</a>\u001b[0m optimizer\u001b[39m.\u001b[39mstep()\n\u001b[1;32m <a href='vscode-notebook-cell://wsl%2Bubuntu/home/raghu/work/ERA-V1-assignments/assignment-22/main.ipynb#X16sdnNjb2RlLXJlbW90ZQ%3D%3D?line=56'>57</a>\u001b[0m optimizer\u001b[39m.\u001b[39mzero_grad()\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/lightning/fabric/fabric.py:455\u001b[0m, in \u001b[0;36mFabric.clip_gradients\u001b[0;34m(self, module, optimizer, clip_val, max_norm, norm_type, error_if_nonfinite)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m 454\u001b[0m \u001b[39mif\u001b[39;00m max_norm \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m--> 455\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mstrategy\u001b[39m.\u001b[39;49mclip_gradients_norm(\n\u001b[1;32m 456\u001b[0m _unwrap_objects(module),\n\u001b[1;32m 457\u001b[0m _unwrap_objects(optimizer),\n\u001b[1;32m 458\u001b[0m max_norm\u001b[39m=\u001b[39;49mmax_norm,\n\u001b[1;32m 459\u001b[0m norm_type\u001b[39m=\u001b[39;49mnorm_type,\n\u001b[1;32m 460\u001b[0m error_if_nonfinite\u001b[39m=\u001b[39;49merror_if_nonfinite,\n\u001b[1;32m 461\u001b[0m )\n\u001b[1;32m 462\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mYou have to specify either `clip_val` or `max_norm` to do gradient clipping!\u001b[39m\u001b[39m\"\u001b[39m)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/lightning/fabric/strategies/strategy.py:380\u001b[0m, in \u001b[0;36mStrategy.clip_gradients_norm\u001b[0;34m(self, module, optimizer, max_norm, norm_type, error_if_nonfinite)\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mprecision\u001b[39m.\u001b[39munscale_gradients(optimizer)\n\u001b[1;32m 379\u001b[0m parameters \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mprecision\u001b[39m.\u001b[39mmain_params(optimizer)\n\u001b[0;32m--> 380\u001b[0m \u001b[39mreturn\u001b[39;00m torch\u001b[39m.\u001b[39;49mnn\u001b[39m.\u001b[39;49mutils\u001b[39m.\u001b[39;49mclip_grad_norm_(\n\u001b[1;32m 381\u001b[0m parameters, max_norm\u001b[39m=\u001b[39;49mmax_norm, norm_type\u001b[39m=\u001b[39;49mnorm_type, error_if_nonfinite\u001b[39m=\u001b[39;49merror_if_nonfinite\n\u001b[1;32m 382\u001b[0m )\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/torch/nn/utils/clip_grad.py:63\u001b[0m, in \u001b[0;36mclip_grad_norm_\u001b[0;34m(parameters, max_norm, norm_type, error_if_nonfinite, foreach)\u001b[0m\n\u001b[1;32m 59\u001b[0m norms\u001b[39m.\u001b[39mextend([torch\u001b[39m.\u001b[39mlinalg\u001b[39m.\u001b[39mvector_norm(g, norm_type) \u001b[39mfor\u001b[39;00m g \u001b[39min\u001b[39;00m grads])\n\u001b[1;32m 61\u001b[0m total_norm \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mlinalg\u001b[39m.\u001b[39mvector_norm(torch\u001b[39m.\u001b[39mstack([norm\u001b[39m.\u001b[39mto(first_device) \u001b[39mfor\u001b[39;00m norm \u001b[39min\u001b[39;00m norms]), norm_type)\n\u001b[0;32m---> 63\u001b[0m \u001b[39mif\u001b[39;00m error_if_nonfinite \u001b[39mand\u001b[39;00m torch\u001b[39m.\u001b[39mlogical_or(total_norm\u001b[39m.\u001b[39misnan(), total_norm\u001b[39m.\u001b[39misinf()):\n\u001b[1;32m 64\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[1;32m 65\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mThe total norm of order \u001b[39m\u001b[39m{\u001b[39;00mnorm_type\u001b[39m}\u001b[39;00m\u001b[39m for gradients from \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 66\u001b[0m \u001b[39m'\u001b[39m\u001b[39m`parameters` is non-finite, so it cannot be clipped. To disable \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 67\u001b[0m \u001b[39m'\u001b[39m\u001b[39mthis error and scale the gradients by the non-finite norm anyway, \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 68\u001b[0m \u001b[39m'\u001b[39m\u001b[39mset `error_if_nonfinite=False`\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m 69\u001b[0m clip_coef \u001b[39m=\u001b[39m max_norm \u001b[39m/\u001b[39m (total_norm \u001b[39m+\u001b[39m \u001b[39m1e-6\u001b[39m)\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"torch.set_float32_matmul_precision(\"medium\")\n",
"setup(\n",
" devices=1,\n",
" #train_data_dir=Path(\"data/lit-redpajama-sample\")\n",
" train_data_dir=Path(\"/home/raghu/work/data/redpajama/data/lit-redpajama-sample\")\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|