Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# # Data loading based on https://github.com/NVIDIA/flownet2-pytorch | |
import os | |
import numpy as np | |
import os.path as osp | |
from PIL import Image | |
from tqdm import tqdm | |
import csv | |
import imageio | |
# Check for endianness, based on Daniel Scharstein's optical flow code. | |
# Using little-endian architecture, these two should be equal. | |
TAG_FLOAT = 202021.25 | |
TAG_CHAR = "PIEH" | |
def depth_read(filename): | |
"""Read depth data from file, return as numpy array.""" | |
f = open(filename, "rb") | |
check = np.fromfile(f, dtype=np.float32, count=1)[0] | |
assert ( | |
check == TAG_FLOAT | |
), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format( | |
TAG_FLOAT, check | |
) | |
width = np.fromfile(f, dtype=np.int32, count=1)[0] | |
height = np.fromfile(f, dtype=np.int32, count=1)[0] | |
size = width * height | |
assert ( | |
width > 0 and height > 0 and size > 1 and size < 100000000 | |
), " depth_read:: Wrong input size (width = {0}, height = {1}).".format( | |
width, height | |
) | |
depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width)) | |
return depth | |
def extract_sintel( | |
root, | |
depth_root, | |
sample_len=-1, | |
csv_save_path="", | |
datatset_name="", | |
saved_rgb_dir="", | |
saved_disp_dir="", | |
): | |
scenes_names = os.listdir(root) | |
all_samples = [] | |
for i, seq_name in enumerate(tqdm(scenes_names)): | |
all_img_names = os.listdir(os.path.join(root, seq_name)) | |
all_img_names = [x for x in all_img_names if x.endswith(".png")] | |
all_img_names.sort() | |
all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:])) | |
seq_len = len(all_img_names) | |
step = sample_len if sample_len > 0 else seq_len | |
for ref_idx in range(0, seq_len, step): | |
print(f"Progress: {seq_name}, {ref_idx // step} / {seq_len // step}") | |
video_imgs = [] | |
video_depths = [] | |
if (ref_idx + step) <= seq_len: | |
ref_e = ref_idx + step | |
else: | |
continue | |
for idx in range(ref_idx, ref_e): | |
im_path = osp.join(root, seq_name, all_img_names[idx]) | |
depth_path = osp.join( | |
depth_root, seq_name, all_img_names[idx][:-3] + "dpt" | |
) | |
depth = depth_read(depth_path) | |
disp = depth | |
video_depths.append(disp) | |
video_imgs.append(np.array(Image.open(im_path))) | |
disp_video = np.array(video_depths)[:, None] | |
img_video = np.array(video_imgs)[..., 0:3] | |
data_root = saved_rgb_dir + datatset_name | |
disp_root = saved_disp_dir + datatset_name | |
os.makedirs(data_root, exist_ok=True) | |
os.makedirs(disp_root, exist_ok=True) | |
img_video_dir = data_root | |
disp_video_dir = disp_root | |
img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4") | |
disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz") | |
imageio.mimsave( | |
img_video_path, img_video, fps=15, quality=10, macro_block_size=1 | |
) | |
np.savez(disp_video_path, disparity=disp_video) | |
sample = {} | |
sample["filepath_left"] = os.path.join( | |
f"{datatset_name}/{seq_name}_rgb_left.mp4" | |
) | |
sample["filepath_disparity"] = os.path.join( | |
f"{datatset_name}/{seq_name}_disparity.npz" | |
) | |
all_samples.append(sample) | |
filename_ = csv_save_path | |
os.makedirs(os.path.dirname(filename_), exist_ok=True) | |
fields = ["filepath_left", "filepath_disparity"] | |
with open(filename_, "w") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=fields) | |
writer.writeheader() | |
writer.writerows(all_samples) | |
print(f"{filename_} has been saved.") | |
if __name__ == "__main__": | |
extract_sintel( | |
root="path/to/Sintel-Depth/training_image/clean", | |
depth_root="path/to/Sintel-Depth/MPI-Sintel-depth-training-20150305/training/depth", | |
saved_rgb_dir="./benchmark/datasets/", | |
saved_disp_dir="./benchmark/datasets/", | |
csv_save_path=f"./benchmark/datasets/sintel.csv", | |
sample_len=-1, | |
datatset_name="sintel", | |
) | |