DepthCrafter / app.py
wbhu-tc's picture
Update app.py
6d69f47 verified
raw
history blame
8.69 kB
import gc
import os
import numpy as np
import spaces
import gradio as gr
import torch
from diffusers.training_utils import set_seed
from depthcrafter.depth_crafter_ppl import DepthCrafterPipeline
from depthcrafter.unet import DiffusersUNetSpatioTemporalConditionModelDepthCrafter
import uuid
import random
from huggingface_hub import hf_hub_download
from depthcrafter.utils import read_video_frames, vis_sequence_depth, save_video
examples = [
["examples/example_01.mp4", 10, 1.2, 1024, 60],
["examples/example_02.mp4", 10, 1.2, 1024, 60],
["examples/example_03.mp4", 10, 1.2, 1024, 60],
["examples/example_04.mp4", 10, 1.2, 1024, 60],
["examples/example_05.mp4", 10, 1.2, 1024, 60],
]
unet = DiffusersUNetSpatioTemporalConditionModelDepthCrafter.from_pretrained(
"tencent/DepthCrafter",
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
)
pipe = DepthCrafterPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
unet=unet,
torch_dtype=torch.float16,
variant="fp16",
)
pipe.to("cuda")
@spaces.GPU(duration=140)
def infer_depth(
video: str,
num_denoising_steps: int,
guidance_scale: float,
max_res: int = 1024,
process_length: int = 195,
#
save_folder: str = "./demo_output",
window_size: int = 110,
overlap: int = 25,
target_fps: int = 15,
seed: int = 42,
track_time: bool = True,
save_npz: bool = False,
):
set_seed(seed)
pipe.enable_xformers_memory_efficient_attention()
frames, target_fps = read_video_frames(video, process_length, target_fps, max_res)
print(f"==> video name: {video}, frames shape: {frames.shape}")
# inference the depth map using the DepthCrafter pipeline
with torch.inference_mode():
res = pipe(
frames,
height=frames.shape[1],
width=frames.shape[2],
output_type="np",
guidance_scale=guidance_scale,
num_inference_steps=num_denoising_steps,
window_size=window_size,
overlap=overlap,
track_time=track_time,
).frames[0]
# convert the three-channel output to a single channel depth map
res = res.sum(-1) / res.shape[-1]
# normalize the depth map to [0, 1] across the whole video
res = (res - res.min()) / (res.max() - res.min())
# visualize the depth map and save the results
vis = vis_sequence_depth(res)
# save the depth map and visualization with the target FPS
save_path = os.path.join(save_folder, os.path.splitext(os.path.basename(video))[0])
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if save_npz:
np.savez_compressed(save_path + ".npz", depth=res)
save_video(res, save_path + "_depth.mp4", fps=target_fps)
save_video(vis, save_path + "_vis.mp4", fps=target_fps)
save_video(frames, save_path + "_input.mp4", fps=target_fps)
# clear the cache for the next video
gc.collect()
torch.cuda.empty_cache()
return [
save_path + "_input.mp4",
save_path + "_vis.mp4",
# save_path + "_depth.mp4",
]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as depthcrafter_iface:
gr.Markdown(
"""
<div align='center'> <h1> DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos </span> </h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
<a href='https://wbhu.github.io'>Wenbo Hu</a>, \
<a href='https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en'>Xiangjun Gao</a>, \
<a href='https://xiaoyu258.github.io/'>Xiaoyu Li</a>, \
<a href='https://scholar.google.com/citations?user=tZ3dS3MAAAAJ&hl=en'>Sijie Zhao</a>, \
<a href='https://vinthony.github.io/academic'> Xiaodong Cun</a>, \
<a href='https://yzhang2016.github.io'>Yong Zhang</a>, \
<a href='https://home.cse.ust.hk/~quan'>Long Quan</a>, \
<a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en'>Ying Shan</a>\
</h2> \
<a style='font-size:18px;color: #000000'>If you find DepthCrafter useful, please help ⭐ the </a>\
<a style='font-size:18px;color: #FF5DB0' href='https://github.com/Tencent/DepthCrafter'>[Github Repo]</a>\
<a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2409.02095'> [ArXiv] </a>\
<a style='font-size:18px;color: #000000' href='https://depthcrafter.github.io/'> [Project Page] </a> </div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_video = gr.Video(label="Input Video")
# with gr.Tab(label="Output"):
with gr.Column(scale=2):
with gr.Row(equal_height=True):
output_video_1 = gr.Video(
label="Preprocessed video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
output_video_2 = gr.Video(
label="Generated Depth Video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row(equal_height=False):
with gr.Accordion("Advanced Settings", open=False):
num_denoising_steps = gr.Slider(
label="num denoising steps",
minimum=1,
maximum=25,
value=10,
step=1,
)
guidance_scale = gr.Slider(
label="cfg scale",
minimum=1.0,
maximum=1.2,
value=1.2,
step=0.1,
)
max_res = gr.Slider(
label="max resolution",
minimum=512,
maximum=2048,
value=1024,
step=64,
)
process_length = gr.Slider(
label="process length",
minimum=1,
maximum=280,
value=60,
step=1,
)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[
input_video,
num_denoising_steps,
guidance_scale,
max_res,
process_length,
],
outputs=[output_video_1, output_video_2],
fn=infer_depth,
cache_examples="lazy",
)
gr.Markdown(
"""
<span style='font-size:18px;color: #E7CCCC'>Note:
For time quota consideration, we set the default parameters to be more efficient here,
with a trade-off of shorter video length and slightly lower quality.
You may adjust the parameters according to our
<a style='font-size:18px;color: #FF5DB0' href='https://github.com/Tencent/DepthCrafter'>[Github Repo]</a>
for better results if you have enough time quota.
</span>
"""
)
generate_btn.click(
fn=infer_depth,
inputs=[
input_video,
num_denoising_steps,
guidance_scale,
max_res,
process_length,
],
outputs=[output_video_1, output_video_2],
)
return depthcrafter_iface
demo = construct_demo()
if __name__ == "__main__":
demo.queue()
# demo.launch(server_name="0.0.0.0", server_port=80, debug=True)
demo.launch(share=True)