File size: 7,463 Bytes
7c1a14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528826b
7c1a14b
 
 
 
 
 
 
 
 
528826b
7c1a14b
 
 
528826b
7c1a14b
 
528826b
7c1a14b
 
 
528826b
22be043
7c1a14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gc
import os
import numpy as np
import torch
import argparse
from diffusers.training_utils import set_seed

from depthcrafter.depth_crafter_ppl import DepthCrafterPipeline
from depthcrafter.unet import DiffusersUNetSpatioTemporalConditionModelDepthCrafter
from depthcrafter.utils import vis_sequence_depth, save_video, read_video_frames


class DepthCrafterDemo:
    def __init__(
        self,
        unet_path: str,
        pre_train_path: str,
        cpu_offload: str = "model",
    ):
        unet = DiffusersUNetSpatioTemporalConditionModelDepthCrafter.from_pretrained(
            unet_path,
            low_cpu_mem_usage=True,
            torch_dtype=torch.float16,
        )
        # load weights of other components from the provided checkpoint
        self.pipe = DepthCrafterPipeline.from_pretrained(
            pre_train_path,
            unet=unet,
            torch_dtype=torch.float16,
            variant="fp16",
        )

        # for saving memory, we can offload the model to CPU, or even run the model sequentially to save more memory
        if cpu_offload is not None:
            if cpu_offload == "sequential":
                # This will slow, but save more memory
                self.pipe.enable_sequential_cpu_offload()
            elif cpu_offload == "model":
                self.pipe.enable_model_cpu_offload()
            else:
                raise ValueError(f"Unknown cpu offload option: {cpu_offload}")
        else:
            self.pipe.to("cuda")
        # enable attention slicing and xformers memory efficient attention
        try:
            self.pipe.enable_xformers_memory_efficient_attention()
        except Exception as e:
            print(e)
            print("Xformers is not enabled")
        self.pipe.enable_attention_slicing()

    def infer(
        self,
        video: str,
        num_denoising_steps: int,
        guidance_scale: float,
        save_folder: str = "./demo_output",
        window_size: int = 110,
        process_length: int = 195,
        overlap: int = 25,
        max_res: int = 1024,
        target_fps: int = 15,
        seed: int = 42,
        track_time: bool = True,
        save_npz: bool = False,
    ):
        set_seed(seed)

        frames, target_fps = read_video_frames(
            video, process_length, target_fps, max_res
        )
        print(f"==> video name: {video}, frames shape: {frames.shape}")

        # inference the depth map using the DepthCrafter pipeline
        with torch.inference_mode():
            res = self.pipe(
                frames,
                height=frames.shape[1],
                width=frames.shape[2],
                output_type="np",
                guidance_scale=guidance_scale,
                num_inference_steps=num_denoising_steps,
                window_size=window_size,
                overlap=overlap,
                track_time=track_time,
            ).frames[0]
        # convert the three-channel output to a single channel depth map
        res = res.sum(-1) / res.shape[-1]
        # normalize the depth map to [0, 1] across the whole video
        res = (res - res.min()) / (res.max() - res.min())
        # visualize the depth map and save the results
        vis = vis_sequence_depth(res)
        # save the depth map and visualization with the target FPS
        save_path = os.path.join(
            save_folder, os.path.splitext(os.path.basename(video))[0]
        )
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        if save_npz:
            np.savez_compressed(save_path + ".npz", depth=res)
        save_video(res, save_path + "_depth.mp4", fps=target_fps)
        save_video(vis, save_path + "_vis.mp4", fps=target_fps)
        save_video(frames, save_path + "_input.mp4", fps=target_fps)
        return [
            save_path + "_input.mp4",
            save_path + "_vis.mp4",
            save_path + "_depth.mp4",
        ]

    def run(
        self,
        input_video,
        num_denoising_steps,
        guidance_scale,
        max_res=1024,
        process_length=195,
    ):
        res_path = self.infer(
            input_video,
            num_denoising_steps,
            guidance_scale,
            max_res=max_res,
            process_length=process_length,
        )
        # clear the cache for the next video
        gc.collect()
        torch.cuda.empty_cache()
        return res_path[:2]


if __name__ == "__main__":
    # running configs
    # the most important arguments for memory saving are `cpu_offload`, `enable_xformers`, `max_res`, and `window_size`
    # the most important arguments for trade-off between quality and speed are
    # `num_inference_steps`, `guidance_scale`, and `max_res`
    parser = argparse.ArgumentParser(description="DepthCrafter")
    parser.add_argument(
        "--video-path", type=str, required=True, help="Path to the input video file(s)"
    )
    parser.add_argument(
        "--save-folder",
        type=str,
        default="./demo_output",
        help="Folder to save the output",
    )
    parser.add_argument(
        "--unet-path",
        type=str,
        default="tencent/DepthCrafter",
        help="Path to the UNet model",
    )
    parser.add_argument(
        "--pre-train-path",
        type=str,
        default="stabilityai/stable-video-diffusion-img2vid-xt",
        help="Path to the pre-trained model",
    )
    parser.add_argument(
        "--process-length", type=int, default=19500, help="Number of frames to process"
    )
    parser.add_argument(
        "--cpu-offload",
        type=str,
        default="model",
        choices=["model", "sequential", None],
        help="CPU offload option",
    )
    parser.add_argument(
        "--target-fps", type=int, default=-1, help="Target FPS for the output video"
    )  # -1 for original fps
    parser.add_argument("--seed", type=int, default=42, help="Random seed")
    parser.add_argument(
        "--num-inference-steps", type=int, default=4, help="Number of inference steps"
    )
    parser.add_argument(
        "--guidance-scale", type=float, default=1, help="Guidance scale"
    )
    parser.add_argument("--window-size", type=int, default=110, help="Window size")
    parser.add_argument("--overlap", type=int, default=25, help="Overlap size")
    parser.add_argument("--max-res", type=int, default=512, help="Maximum resolution")
    parser.add_argument("--save_npz", type=bool, default=False, help="Save npz file")
    parser.add_argument("--track_time", type=bool, default=False, help="Track time")

    args = parser.parse_args()

    depthcrafter_demo = DepthCrafterDemo(
        unet_path=args.unet_path,
        pre_train_path=args.pre_train_path,
        cpu_offload=args.cpu_offload,
    )
    # process the videos, the video paths are separated by comma
    video_paths = args.video_path.split(",")
    for video in video_paths:
        depthcrafter_demo.infer(
            video,
            args.num_inference_steps,
            args.guidance_scale,
            save_folder=args.save_folder,
            window_size=args.window_size,
            process_length=args.process_length,
            overlap=args.overlap,
            max_res=args.max_res,
            target_fps=args.target_fps,
            seed=args.seed,
            track_time=args.track_time,
            save_npz=args.save_npz,
        )
        # clear the cache for the next video
        gc.collect()
        torch.cuda.empty_cache()