Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
import cv2 | |
import numpy as np | |
from ultralytics.solutions.solutions import BaseSolution | |
from ultralytics.utils.plotting import Annotator, colors | |
class TrackZone(BaseSolution): | |
""" | |
A class to manage region-based object tracking in a video stream. | |
This class extends the BaseSolution class and provides functionality for tracking objects within a specific region | |
defined by a polygonal area. Objects outside the region are excluded from tracking. It supports dynamic initialization | |
of the region, allowing either a default region or a user-specified polygon. | |
Attributes: | |
region (ndarray): The polygonal region for tracking, represented as a convex hull. | |
Methods: | |
trackzone: Processes each frame of the video, applying region-based tracking. | |
Examples: | |
>>> tracker = TrackZone() | |
>>> frame = cv2.imread("frame.jpg") | |
>>> processed_frame = tracker.trackzone(frame) | |
>>> cv2.imshow("Tracked Frame", processed_frame) | |
""" | |
def __init__(self, **kwargs): | |
"""Initializes the TrackZone class for tracking objects within a defined region in video streams.""" | |
super().__init__(**kwargs) | |
default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)] | |
self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32)) | |
def trackzone(self, im0): | |
""" | |
Processes the input frame to track objects within a defined region. | |
This method initializes the annotator, creates a mask for the specified region, extracts tracks | |
only from the masked area, and updates tracking information. Objects outside the region are ignored. | |
Args: | |
im0 (numpy.ndarray): The input image or frame to be processed. | |
Returns: | |
(numpy.ndarray): The processed image with tracking id and bounding boxes annotations. | |
Examples: | |
>>> tracker = TrackZone() | |
>>> frame = cv2.imread("path/to/image.jpg") | |
>>> tracker.trackzone(frame) | |
""" | |
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator | |
# Create a mask for the region and extract tracks from the masked image | |
masked_frame = cv2.bitwise_and(im0, im0, mask=cv2.fillPoly(np.zeros_like(im0[:, :, 0]), [self.region], 255)) | |
self.extract_tracks(masked_frame) | |
cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2) | |
# Iterate over boxes, track ids, classes indexes list and draw bounding boxes | |
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): | |
self.annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True)) | |
self.display_output(im0) # display output with base class function | |
return im0 # return output image for more usage | |