Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
import contextlib | |
import os | |
import subprocess | |
import time | |
from pathlib import Path | |
import pytest | |
from tests import MODEL, SOURCE, TMP | |
from ultralytics import YOLO, download | |
from ultralytics.utils import DATASETS_DIR, SETTINGS | |
from ultralytics.utils.checks import check_requirements | |
def test_model_ray_tune(): | |
"""Tune YOLO model using Ray for hyperparameter optimization.""" | |
YOLO("yolo11n-cls.yaml").tune( | |
use_ray=True, data="imagenet10", grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device="cpu" | |
) | |
def test_mlflow(): | |
"""Test training with MLflow tracking enabled (see https://mlflow.org/ for details).""" | |
SETTINGS["mlflow"] = True | |
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu") | |
SETTINGS["mlflow"] = False | |
def test_mlflow_keep_run_active(): | |
"""Ensure MLflow run status matches MLFLOW_KEEP_RUN_ACTIVE environment variable settings.""" | |
import mlflow | |
SETTINGS["mlflow"] = True | |
run_name = "Test Run" | |
os.environ["MLFLOW_RUN"] = run_name | |
# Test with MLFLOW_KEEP_RUN_ACTIVE=True | |
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "True" | |
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") | |
status = mlflow.active_run().info.status | |
assert status == "RUNNING", "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True" | |
run_id = mlflow.active_run().info.run_id | |
# Test with MLFLOW_KEEP_RUN_ACTIVE=False | |
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "False" | |
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") | |
status = mlflow.get_run(run_id=run_id).info.status | |
assert status == "FINISHED", "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False" | |
# Test with MLFLOW_KEEP_RUN_ACTIVE not set | |
os.environ.pop("MLFLOW_KEEP_RUN_ACTIVE", None) | |
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") | |
status = mlflow.get_run(run_id=run_id).info.status | |
assert status == "FINISHED", "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set" | |
SETTINGS["mlflow"] = False | |
def test_triton(): | |
""" | |
Test NVIDIA Triton Server functionalities with YOLO model. | |
See https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver. | |
""" | |
check_requirements("tritonclient[all]") | |
from tritonclient.http import InferenceServerClient # noqa | |
# Create variables | |
model_name = "yolo" | |
triton_repo = TMP / "triton_repo" # Triton repo path | |
triton_model = triton_repo / model_name # Triton model path | |
# Export model to ONNX | |
f = YOLO(MODEL).export(format="onnx", dynamic=True) | |
# Prepare Triton repo | |
(triton_model / "1").mkdir(parents=True, exist_ok=True) | |
Path(f).rename(triton_model / "1" / "model.onnx") | |
(triton_model / "config.pbtxt").touch() | |
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver | |
tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB | |
# Pull the image | |
subprocess.call(f"docker pull {tag}", shell=True) | |
# Run the Triton server and capture the container ID | |
container_id = ( | |
subprocess.check_output( | |
f"docker run -d --rm -v {triton_repo}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models", | |
shell=True, | |
) | |
.decode("utf-8") | |
.strip() | |
) | |
# Wait for the Triton server to start | |
triton_client = InferenceServerClient(url="localhost:8000", verbose=False, ssl=False) | |
# Wait until model is ready | |
for _ in range(10): | |
with contextlib.suppress(Exception): | |
assert triton_client.is_model_ready(model_name) | |
break | |
time.sleep(1) | |
# Check Triton inference | |
YOLO(f"http://localhost:8000/{model_name}", "detect")(SOURCE) # exported model inference | |
# Kill and remove the container at the end of the test | |
subprocess.call(f"docker kill {container_id}", shell=True) | |
def test_pycocotools(): | |
"""Validate YOLO model predictions on COCO dataset using pycocotools.""" | |
from ultralytics.models.yolo.detect import DetectionValidator | |
from ultralytics.models.yolo.pose import PoseValidator | |
from ultralytics.models.yolo.segment import SegmentationValidator | |
# Download annotations after each dataset downloads first | |
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/" | |
args = {"model": "yolo11n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64} | |
validator = DetectionValidator(args=args) | |
validator() | |
validator.is_coco = True | |
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8/annotations") | |
_ = validator.eval_json(validator.stats) | |
args = {"model": "yolo11n-seg.pt", "data": "coco8-seg.yaml", "save_json": True, "imgsz": 64} | |
validator = SegmentationValidator(args=args) | |
validator() | |
validator.is_coco = True | |
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8-seg/annotations") | |
_ = validator.eval_json(validator.stats) | |
args = {"model": "yolo11n-pose.pt", "data": "coco8-pose.yaml", "save_json": True, "imgsz": 64} | |
validator = PoseValidator(args=args) | |
validator() | |
validator.is_coco = True | |
download(f"{url}person_keypoints_val2017.json", dir=DATASETS_DIR / "coco8-pose/annotations") | |
_ = validator.eval_json(validator.stats) | |