Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
""" | |
Generate predictions using the Segment Anything Model (SAM). | |
SAM is an advanced image segmentation model offering features like promptable segmentation and zero-shot performance. | |
This module contains the implementation of the prediction logic and auxiliary utilities required to perform segmentation | |
using SAM. It forms an integral part of the Ultralytics framework and is designed for high-performance, real-time image | |
segmentation tasks. | |
""" | |
from collections import OrderedDict | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from ultralytics.data.augment import LetterBox | |
from ultralytics.engine.predictor import BasePredictor | |
from ultralytics.engine.results import Results | |
from ultralytics.utils import DEFAULT_CFG, ops | |
from ultralytics.utils.torch_utils import select_device, smart_inference_mode | |
from .amg import ( | |
batch_iterator, | |
batched_mask_to_box, | |
build_all_layer_point_grids, | |
calculate_stability_score, | |
generate_crop_boxes, | |
is_box_near_crop_edge, | |
remove_small_regions, | |
uncrop_boxes_xyxy, | |
uncrop_masks, | |
) | |
from .build import build_sam | |
class Predictor(BasePredictor): | |
""" | |
Predictor class for SAM, enabling real-time image segmentation with promptable capabilities. | |
This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image | |
segmentation tasks. It supports various input prompts like points, bounding boxes, and masks for | |
fine-grained control over segmentation results. | |
Attributes: | |
args (SimpleNamespace): Configuration arguments for the predictor. | |
model (torch.nn.Module): The loaded SAM model. | |
device (torch.device): The device (CPU or GPU) on which the model is loaded. | |
im (torch.Tensor): The preprocessed input image. | |
features (torch.Tensor): Extracted image features. | |
prompts (Dict): Dictionary to store various types of prompts (e.g., bboxes, points, masks). | |
segment_all (bool): Flag to indicate if full image segmentation should be performed. | |
mean (torch.Tensor): Mean values for image normalization. | |
std (torch.Tensor): Standard deviation values for image normalization. | |
Methods: | |
preprocess: Prepares input images for model inference. | |
pre_transform: Performs initial transformations on the input image. | |
inference: Performs segmentation inference based on input prompts. | |
prompt_inference: Internal function for prompt-based segmentation inference. | |
generate: Generates segmentation masks for an entire image. | |
setup_model: Initializes the SAM model for inference. | |
get_model: Builds and returns a SAM model. | |
postprocess: Post-processes model outputs to generate final results. | |
setup_source: Sets up the data source for inference. | |
set_image: Sets and preprocesses a single image for inference. | |
get_im_features: Extracts image features using the SAM image encoder. | |
set_prompts: Sets prompts for subsequent inference. | |
reset_image: Resets the current image and its features. | |
remove_small_regions: Removes small disconnected regions and holes from masks. | |
Examples: | |
>>> predictor = Predictor() | |
>>> predictor.setup_model(model_path="sam_model.pt") | |
>>> predictor.set_image("image.jpg") | |
>>> bboxes = [[100, 100, 200, 200]] | |
>>> results = predictor(bboxes=bboxes) | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
""" | |
Initialize the Predictor with configuration, overrides, and callbacks. | |
Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or | |
callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True | |
for optimal results. | |
Args: | |
cfg (Dict): Configuration dictionary containing default settings. | |
overrides (Dict | None): Dictionary of values to override default configuration. | |
_callbacks (Dict | None): Dictionary of callback functions to customize behavior. | |
Examples: | |
>>> predictor_example = Predictor(cfg=DEFAULT_CFG) | |
>>> predictor_example_with_imgsz = Predictor(overrides={"imgsz": 640}) | |
>>> predictor_example_with_callback = Predictor(_callbacks={"on_predict_start": custom_callback}) | |
""" | |
if overrides is None: | |
overrides = {} | |
overrides.update(dict(task="segment", mode="predict", batch=1)) | |
super().__init__(cfg, overrides, _callbacks) | |
self.args.retina_masks = True | |
self.im = None | |
self.features = None | |
self.prompts = {} | |
self.segment_all = False | |
def preprocess(self, im): | |
""" | |
Preprocess the input image for model inference. | |
This method prepares the input image by applying transformations and normalization. It supports both | |
torch.Tensor and list of np.ndarray as input formats. | |
Args: | |
im (torch.Tensor | List[np.ndarray]): Input image(s) in BCHW tensor format or list of HWC numpy arrays. | |
Returns: | |
im (torch.Tensor): The preprocessed image tensor, normalized and converted to the appropriate dtype. | |
Examples: | |
>>> predictor = Predictor() | |
>>> image = torch.rand(1, 3, 640, 640) | |
>>> preprocessed_image = predictor.preprocess(image) | |
""" | |
if self.im is not None: | |
return self.im | |
not_tensor = not isinstance(im, torch.Tensor) | |
if not_tensor: | |
im = np.stack(self.pre_transform(im)) | |
im = im[..., ::-1].transpose((0, 3, 1, 2)) | |
im = np.ascontiguousarray(im) | |
im = torch.from_numpy(im) | |
im = im.to(self.device) | |
im = im.half() if self.model.fp16 else im.float() | |
if not_tensor: | |
im = (im - self.mean) / self.std | |
return im | |
def pre_transform(self, im): | |
""" | |
Perform initial transformations on the input image for preprocessing. | |
This method applies transformations such as resizing to prepare the image for further preprocessing. | |
Currently, batched inference is not supported; hence the list length should be 1. | |
Args: | |
im (List[np.ndarray]): List containing a single image in HWC numpy array format. | |
Returns: | |
(List[np.ndarray]): List containing the transformed image. | |
Raises: | |
AssertionError: If the input list contains more than one image. | |
Examples: | |
>>> predictor = Predictor() | |
>>> image = np.random.rand(480, 640, 3) # Single HWC image | |
>>> transformed = predictor.pre_transform([image]) | |
>>> print(len(transformed)) | |
1 | |
""" | |
assert len(im) == 1, "SAM model does not currently support batched inference" | |
letterbox = LetterBox(self.args.imgsz, auto=False, center=False) | |
return [letterbox(image=x) for x in im] | |
def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs): | |
""" | |
Perform image segmentation inference based on the given input cues, using the currently loaded image. | |
This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt | |
encoder, and mask decoder for real-time and promptable segmentation tasks. | |
Args: | |
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W). | |
bboxes (np.ndarray | List | None): Bounding boxes with shape (N, 4), in XYXY format. | |
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2), in pixels. | |
labels (np.ndarray | List | None): Labels for point prompts, shape (N,). 1 = foreground, 0 = background. | |
masks (np.ndarray | None): Low-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256. | |
multimask_output (bool): Flag to return multiple masks. Helpful for ambiguous prompts. | |
*args (Any): Additional positional arguments. | |
**kwargs (Any): Additional keyword arguments. | |
Returns: | |
(np.ndarray): The output masks in shape (C, H, W), where C is the number of generated masks. | |
(np.ndarray): An array of length C containing quality scores predicted by the model for each mask. | |
(np.ndarray): Low-resolution logits of shape (C, H, W) for subsequent inference, where H=W=256. | |
Examples: | |
>>> predictor = Predictor() | |
>>> predictor.setup_model(model_path="sam_model.pt") | |
>>> predictor.set_image("image.jpg") | |
>>> results = predictor(bboxes=[[0, 0, 100, 100]]) | |
""" | |
# Override prompts if any stored in self.prompts | |
bboxes = self.prompts.pop("bboxes", bboxes) | |
points = self.prompts.pop("points", points) | |
masks = self.prompts.pop("masks", masks) | |
labels = self.prompts.pop("labels", labels) | |
if all(i is None for i in [bboxes, points, masks]): | |
return self.generate(im, *args, **kwargs) | |
return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output) | |
def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False): | |
""" | |
Performs image segmentation inference based on input cues using SAM's specialized architecture. | |
This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation. | |
It processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks. | |
Args: | |
im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W). | |
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4). | |
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels. | |
labels (np.ndarray | List | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background. | |
masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256. | |
multimask_output (bool): Flag to return multiple masks for ambiguous prompts. | |
Raises: | |
AssertionError: If the number of points don't match the number of labels, in case labels were passed. | |
Returns: | |
(np.ndarray): Output masks with shape (C, H, W), where C is the number of generated masks. | |
(np.ndarray): Quality scores predicted by the model for each mask, with length C. | |
Examples: | |
>>> predictor = Predictor() | |
>>> im = torch.rand(1, 3, 1024, 1024) | |
>>> bboxes = [[100, 100, 200, 200]] | |
>>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes) | |
""" | |
features = self.get_im_features(im) if self.features is None else self.features | |
bboxes, points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks) | |
points = (points, labels) if points is not None else None | |
# Embed prompts | |
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks) | |
# Predict masks | |
pred_masks, pred_scores = self.model.mask_decoder( | |
image_embeddings=features, | |
image_pe=self.model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=multimask_output, | |
) | |
# (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, ) | |
# `d` could be 1 or 3 depends on `multimask_output`. | |
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1) | |
def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None): | |
""" | |
Prepares and transforms the input prompts for processing based on the destination shape. | |
Args: | |
dst_shape (tuple): The target shape (height, width) for the prompts. | |
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4). | |
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels. | |
labels (np.ndarray | List | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background. | |
masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array. | |
Raises: | |
AssertionError: If the number of points don't match the number of labels, in case labels were passed. | |
Returns: | |
(tuple): A tuple containing transformed bounding boxes, points, labels, and masks. | |
""" | |
src_shape = self.batch[1][0].shape[:2] | |
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1]) | |
# Transform input prompts | |
if points is not None: | |
points = torch.as_tensor(points, dtype=torch.float32, device=self.device) | |
points = points[None] if points.ndim == 1 else points | |
# Assuming labels are all positive if users don't pass labels. | |
if labels is None: | |
labels = np.ones(points.shape[:-1]) | |
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device) | |
assert points.shape[-2] == labels.shape[-1], ( | |
f"Number of points {points.shape[-2]} should match number of labels {labels.shape[-1]}." | |
) | |
points *= r | |
if points.ndim == 2: | |
# (N, 2) --> (N, 1, 2), (N, ) --> (N, 1) | |
points, labels = points[:, None, :], labels[:, None] | |
if bboxes is not None: | |
bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device) | |
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes | |
bboxes *= r | |
if masks is not None: | |
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1) | |
return bboxes, points, labels, masks | |
def generate( | |
self, | |
im, | |
crop_n_layers=0, | |
crop_overlap_ratio=512 / 1500, | |
crop_downscale_factor=1, | |
point_grids=None, | |
points_stride=32, | |
points_batch_size=64, | |
conf_thres=0.88, | |
stability_score_thresh=0.95, | |
stability_score_offset=0.95, | |
crop_nms_thresh=0.7, | |
): | |
""" | |
Perform image segmentation using the Segment Anything Model (SAM). | |
This method segments an entire image into constituent parts by leveraging SAM's advanced architecture | |
and real-time performance capabilities. It can optionally work on image crops for finer segmentation. | |
Args: | |
im (torch.Tensor): Input tensor representing the preprocessed image with shape (N, C, H, W). | |
crop_n_layers (int): Number of layers for additional mask predictions on image crops. | |
crop_overlap_ratio (float): Overlap between crops, scaled down in subsequent layers. | |
crop_downscale_factor (int): Scaling factor for sampled points-per-side in each layer. | |
point_grids (List[np.ndarray] | None): Custom grids for point sampling normalized to [0,1]. | |
points_stride (int): Number of points to sample along each side of the image. | |
points_batch_size (int): Batch size for the number of points processed simultaneously. | |
conf_thres (float): Confidence threshold [0,1] for filtering based on mask quality prediction. | |
stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on stability. | |
stability_score_offset (float): Offset value for calculating stability score. | |
crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops. | |
Returns: | |
pred_masks (torch.Tensor): Segmented masks with shape (N, H, W). | |
pred_scores (torch.Tensor): Confidence scores for each mask with shape (N,). | |
pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 4). | |
Examples: | |
>>> predictor = Predictor() | |
>>> im = torch.rand(1, 3, 1024, 1024) # Example input image | |
>>> masks, scores, boxes = predictor.generate(im) | |
""" | |
import torchvision # scope for faster 'import ultralytics' | |
self.segment_all = True | |
ih, iw = im.shape[2:] | |
crop_regions, layer_idxs = generate_crop_boxes((ih, iw), crop_n_layers, crop_overlap_ratio) | |
if point_grids is None: | |
point_grids = build_all_layer_point_grids(points_stride, crop_n_layers, crop_downscale_factor) | |
pred_masks, pred_scores, pred_bboxes, region_areas = [], [], [], [] | |
for crop_region, layer_idx in zip(crop_regions, layer_idxs): | |
x1, y1, x2, y2 = crop_region | |
w, h = x2 - x1, y2 - y1 | |
area = torch.tensor(w * h, device=im.device) | |
points_scale = np.array([[w, h]]) # w, h | |
# Crop image and interpolate to input size | |
crop_im = F.interpolate(im[..., y1:y2, x1:x2], (ih, iw), mode="bilinear", align_corners=False) | |
# (num_points, 2) | |
points_for_image = point_grids[layer_idx] * points_scale | |
crop_masks, crop_scores, crop_bboxes = [], [], [] | |
for (points,) in batch_iterator(points_batch_size, points_for_image): | |
pred_mask, pred_score = self.prompt_inference(crop_im, points=points, multimask_output=True) | |
# Interpolate predicted masks to input size | |
pred_mask = F.interpolate(pred_mask[None], (h, w), mode="bilinear", align_corners=False)[0] | |
idx = pred_score > conf_thres | |
pred_mask, pred_score = pred_mask[idx], pred_score[idx] | |
stability_score = calculate_stability_score( | |
pred_mask, self.model.mask_threshold, stability_score_offset | |
) | |
idx = stability_score > stability_score_thresh | |
pred_mask, pred_score = pred_mask[idx], pred_score[idx] | |
# Bool type is much more memory-efficient. | |
pred_mask = pred_mask > self.model.mask_threshold | |
# (N, 4) | |
pred_bbox = batched_mask_to_box(pred_mask).float() | |
keep_mask = ~is_box_near_crop_edge(pred_bbox, crop_region, [0, 0, iw, ih]) | |
if not torch.all(keep_mask): | |
pred_bbox, pred_mask, pred_score = pred_bbox[keep_mask], pred_mask[keep_mask], pred_score[keep_mask] | |
crop_masks.append(pred_mask) | |
crop_bboxes.append(pred_bbox) | |
crop_scores.append(pred_score) | |
# Do nms within this crop | |
crop_masks = torch.cat(crop_masks) | |
crop_bboxes = torch.cat(crop_bboxes) | |
crop_scores = torch.cat(crop_scores) | |
keep = torchvision.ops.nms(crop_bboxes, crop_scores, self.args.iou) # NMS | |
crop_bboxes = uncrop_boxes_xyxy(crop_bboxes[keep], crop_region) | |
crop_masks = uncrop_masks(crop_masks[keep], crop_region, ih, iw) | |
crop_scores = crop_scores[keep] | |
pred_masks.append(crop_masks) | |
pred_bboxes.append(crop_bboxes) | |
pred_scores.append(crop_scores) | |
region_areas.append(area.expand(len(crop_masks))) | |
pred_masks = torch.cat(pred_masks) | |
pred_bboxes = torch.cat(pred_bboxes) | |
pred_scores = torch.cat(pred_scores) | |
region_areas = torch.cat(region_areas) | |
# Remove duplicate masks between crops | |
if len(crop_regions) > 1: | |
scores = 1 / region_areas | |
keep = torchvision.ops.nms(pred_bboxes, scores, crop_nms_thresh) | |
pred_masks, pred_bboxes, pred_scores = pred_masks[keep], pred_bboxes[keep], pred_scores[keep] | |
return pred_masks, pred_scores, pred_bboxes | |
def setup_model(self, model=None, verbose=True): | |
""" | |
Initializes the Segment Anything Model (SAM) for inference. | |
This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary | |
parameters for image normalization and other Ultralytics compatibility settings. | |
Args: | |
model (torch.nn.Module | None): A pretrained SAM model. If None, a new model is built based on config. | |
verbose (bool): If True, prints selected device information. | |
Examples: | |
>>> predictor = Predictor() | |
>>> predictor.setup_model(model=sam_model, verbose=True) | |
""" | |
device = select_device(self.args.device, verbose=verbose) | |
if model is None: | |
model = self.get_model() | |
model.eval() | |
self.model = model.to(device) | |
self.device = device | |
self.mean = torch.tensor([123.675, 116.28, 103.53]).view(-1, 1, 1).to(device) | |
self.std = torch.tensor([58.395, 57.12, 57.375]).view(-1, 1, 1).to(device) | |
# Ultralytics compatibility settings | |
self.model.pt = False | |
self.model.triton = False | |
self.model.stride = 32 | |
self.model.fp16 = False | |
self.done_warmup = True | |
def get_model(self): | |
"""Retrieves or builds the Segment Anything Model (SAM) for image segmentation tasks.""" | |
return build_sam(self.args.model) | |
def postprocess(self, preds, img, orig_imgs): | |
""" | |
Post-processes SAM's inference outputs to generate object detection masks and bounding boxes. | |
This method scales masks and boxes to the original image size and applies a threshold to the mask | |
predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks. | |
Args: | |
preds (Tuple[torch.Tensor]): The output from SAM model inference, containing: | |
- pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W). | |
- pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1). | |
- pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True. | |
img (torch.Tensor): The processed input image tensor with shape (C, H, W). | |
orig_imgs (List[np.ndarray] | torch.Tensor): The original, unprocessed images. | |
Returns: | |
results (List[Results]): List of Results objects containing detection masks, bounding boxes, and other | |
metadata for each processed image. | |
Examples: | |
>>> predictor = Predictor() | |
>>> preds = predictor.inference(img) | |
>>> results = predictor.postprocess(preds, img, orig_imgs) | |
""" | |
# (N, 1, H, W), (N, 1) | |
pred_masks, pred_scores = preds[:2] | |
pred_bboxes = preds[2] if self.segment_all else None | |
names = dict(enumerate(str(i) for i in range(len(pred_masks)))) | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]): | |
if len(masks) == 0: | |
masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device) | |
else: | |
masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0] | |
masks = masks > self.model.mask_threshold # to bool | |
if pred_bboxes is not None: | |
pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False) | |
else: | |
pred_bboxes = batched_mask_to_box(masks) | |
# NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency. | |
cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device) | |
pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1) | |
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes)) | |
# Reset segment-all mode. | |
self.segment_all = False | |
return results | |
def setup_source(self, source): | |
""" | |
Sets up the data source for inference. | |
This method configures the data source from which images will be fetched for inference. It supports | |
various input types such as image files, directories, video files, and other compatible data sources. | |
Args: | |
source (str | Path | None): The path or identifier for the image data source. Can be a file path, | |
directory path, URL, or other supported source types. | |
Examples: | |
>>> predictor = Predictor() | |
>>> predictor.setup_source("path/to/images") | |
>>> predictor.setup_source("video.mp4") | |
>>> predictor.setup_source(None) # Uses default source if available | |
Notes: | |
- If source is None, the method may use a default source if configured. | |
- The method adapts to different source types and prepares them for subsequent inference steps. | |
- Supported source types may include local files, directories, URLs, and video streams. | |
""" | |
if source is not None: | |
super().setup_source(source) | |
def set_image(self, image): | |
""" | |
Preprocesses and sets a single image for inference. | |
This method prepares the model for inference on a single image by setting up the model if not already | |
initialized, configuring the data source, and preprocessing the image for feature extraction. It | |
ensures that only one image is set at a time and extracts image features for subsequent use. | |
Args: | |
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing | |
an image read by cv2. | |
Raises: | |
AssertionError: If more than one image is attempted to be set. | |
Examples: | |
>>> predictor = Predictor() | |
>>> predictor.set_image("path/to/image.jpg") | |
>>> predictor.set_image(cv2.imread("path/to/image.jpg")) | |
Notes: | |
- This method should be called before performing inference on a new image. | |
- The extracted features are stored in the `self.features` attribute for later use. | |
""" | |
if self.model is None: | |
self.setup_model(model=None) | |
self.setup_source(image) | |
assert len(self.dataset) == 1, "`set_image` only supports setting one image!" | |
for batch in self.dataset: | |
im = self.preprocess(batch[1]) | |
self.features = self.get_im_features(im) | |
break | |
def get_im_features(self, im): | |
"""Extracts image features using the SAM model's image encoder for subsequent mask prediction.""" | |
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], ( | |
f"SAM models only support square image size, but got {self.imgsz}." | |
) | |
self.model.set_imgsz(self.imgsz) | |
return self.model.image_encoder(im) | |
def set_prompts(self, prompts): | |
"""Sets prompts for subsequent inference operations.""" | |
self.prompts = prompts | |
def reset_image(self): | |
"""Resets the current image and its features, clearing them for subsequent inference.""" | |
self.im = None | |
self.features = None | |
def remove_small_regions(masks, min_area=0, nms_thresh=0.7): | |
""" | |
Remove small disconnected regions and holes from segmentation masks. | |
This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM). | |
It removes small disconnected regions and holes from the input masks, and then performs Non-Maximum | |
Suppression (NMS) to eliminate any newly created duplicate boxes. | |
Args: | |
masks (torch.Tensor): Segmentation masks to be processed, with shape (N, H, W) where N is the number of | |
masks, H is height, and W is width. | |
min_area (int): Minimum area threshold for removing disconnected regions and holes. Regions smaller than | |
this will be removed. | |
nms_thresh (float): IoU threshold for the NMS algorithm to remove duplicate boxes. | |
Returns: | |
new_masks (torch.Tensor): Processed masks with small regions removed, shape (N, H, W). | |
keep (List[int]): Indices of remaining masks after NMS, for filtering corresponding boxes. | |
Examples: | |
>>> masks = torch.rand(5, 640, 640) > 0.5 # 5 random binary masks | |
>>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7) | |
>>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}") | |
>>> print(f"Indices of kept masks: {keep}") | |
""" | |
import torchvision # scope for faster 'import ultralytics' | |
if len(masks) == 0: | |
return masks | |
# Filter small disconnected regions and holes | |
new_masks = [] | |
scores = [] | |
for mask in masks: | |
mask = mask.cpu().numpy().astype(np.uint8) | |
mask, changed = remove_small_regions(mask, min_area, mode="holes") | |
unchanged = not changed | |
mask, changed = remove_small_regions(mask, min_area, mode="islands") | |
unchanged = unchanged and not changed | |
new_masks.append(torch.as_tensor(mask).unsqueeze(0)) | |
# Give score=0 to changed masks and 1 to unchanged masks so NMS prefers masks not needing postprocessing | |
scores.append(float(unchanged)) | |
# Recalculate boxes and remove any new duplicates | |
new_masks = torch.cat(new_masks, dim=0) | |
boxes = batched_mask_to_box(new_masks) | |
keep = torchvision.ops.nms(boxes.float(), torch.as_tensor(scores), nms_thresh) | |
return new_masks[keep].to(device=masks.device, dtype=masks.dtype), keep | |
class SAM2Predictor(Predictor): | |
""" | |
SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture. | |
This class extends the base Predictor class to implement SAM2-specific functionality for image | |
segmentation tasks. It provides methods for model initialization, feature extraction, and | |
prompt-based inference. | |
Attributes: | |
_bb_feat_sizes (List[Tuple[int, int]]): Feature sizes for different backbone levels. | |
model (torch.nn.Module): The loaded SAM2 model. | |
device (torch.device): The device (CPU or GPU) on which the model is loaded. | |
features (Dict[str, torch.Tensor]): Cached image features for efficient inference. | |
segment_all (bool): Flag to indicate if all segments should be predicted. | |
prompts (Dict): Dictionary to store various types of prompts for inference. | |
Methods: | |
get_model: Retrieves and initializes the SAM2 model. | |
prompt_inference: Performs image segmentation inference based on various prompts. | |
set_image: Preprocesses and sets a single image for inference. | |
get_im_features: Extracts and processes image features using SAM2's image encoder. | |
Examples: | |
>>> predictor = SAM2Predictor(cfg) | |
>>> predictor.set_image("path/to/image.jpg") | |
>>> bboxes = [[100, 100, 200, 200]] | |
>>> result = predictor(bboxes=bboxes)[0] | |
>>> print(f"Predicted {len(result.masks)} masks with average score {result.boxes.conf.mean():.2f}") | |
""" | |
_bb_feat_sizes = [ | |
(256, 256), | |
(128, 128), | |
(64, 64), | |
] | |
def get_model(self): | |
"""Retrieves and initializes the Segment Anything Model 2 (SAM2) for image segmentation tasks.""" | |
return build_sam(self.args.model) | |
def prompt_inference( | |
self, | |
im, | |
bboxes=None, | |
points=None, | |
labels=None, | |
masks=None, | |
multimask_output=False, | |
img_idx=-1, | |
): | |
""" | |
Performs image segmentation inference based on various prompts using SAM2 architecture. | |
This method leverages the Segment Anything Model 2 (SAM2) to generate segmentation masks for input images | |
based on provided prompts such as bounding boxes, points, or existing masks. It supports both single and | |
multi-object prediction scenarios. | |
Args: | |
im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W). | |
bboxes (np.ndarray | List[List[float]] | None): Bounding boxes in XYXY format with shape (N, 4). | |
points (np.ndarray | List[List[float]] | None): Object location points with shape (N, 2), in pixels. | |
labels (np.ndarray | List[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background. | |
masks (np.ndarray | None): Low-resolution masks from previous predictions with shape (N, H, W). | |
multimask_output (bool): Flag to return multiple masks for ambiguous prompts. | |
img_idx (int): Index of the image in the batch to process. | |
Returns: | |
(np.ndarray): Output masks with shape (C, H, W), where C is the number of generated masks. | |
(np.ndarray): Quality scores for each mask, with length C. | |
Examples: | |
>>> predictor = SAM2Predictor(cfg) | |
>>> image = torch.rand(1, 3, 640, 640) | |
>>> bboxes = [[100, 100, 200, 200]] | |
>>> result = predictor(image, bboxes=bboxes)[0] | |
>>> print(f"Generated {result.masks.shape[0]} masks with average score {result.boxes.conf.mean():.2f}") | |
Notes: | |
- The method supports batched inference for multiple objects when points or bboxes are provided. | |
- Input prompts (bboxes, points) are automatically scaled to match the input image dimensions. | |
- When both bboxes and points are provided, they are merged into a single 'points' input for the model. | |
References: | |
- SAM2 Paper: [Add link to SAM2 paper when available] | |
""" | |
features = self.get_im_features(im) if self.features is None else self.features | |
points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks) | |
points = (points, labels) if points is not None else None | |
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder( | |
points=points, | |
boxes=None, | |
masks=masks, | |
) | |
# Predict masks | |
batched_mode = points is not None and points[0].shape[0] > 1 # multi object prediction | |
high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in features["high_res_feats"]] | |
pred_masks, pred_scores, _, _ = self.model.sam_mask_decoder( | |
image_embeddings=features["image_embed"][img_idx].unsqueeze(0), | |
image_pe=self.model.sam_prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=multimask_output, | |
repeat_image=batched_mode, | |
high_res_features=high_res_features, | |
) | |
# (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, ) | |
# `d` could be 1 or 3 depends on `multimask_output`. | |
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1) | |
def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None): | |
""" | |
Prepares and transforms the input prompts for processing based on the destination shape. | |
Args: | |
dst_shape (tuple): The target shape (height, width) for the prompts. | |
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4). | |
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels. | |
labels (np.ndarray | List | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background. | |
masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array. | |
Raises: | |
AssertionError: If the number of points don't match the number of labels, in case labels were passed. | |
Returns: | |
(tuple): A tuple containing transformed points, labels, and masks. | |
""" | |
bboxes, points, labels, masks = super()._prepare_prompts(dst_shape, bboxes, points, labels, masks) | |
if bboxes is not None: | |
bboxes = bboxes.view(-1, 2, 2) | |
bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(len(bboxes), -1) | |
# NOTE: merge "boxes" and "points" into a single "points" input | |
# (where boxes are added at the beginning) to model.sam_prompt_encoder | |
if points is not None: | |
points = torch.cat([bboxes, points], dim=1) | |
labels = torch.cat([bbox_labels, labels], dim=1) | |
else: | |
points, labels = bboxes, bbox_labels | |
return points, labels, masks | |
def set_image(self, image): | |
""" | |
Preprocesses and sets a single image for inference using the SAM2 model. | |
This method initializes the model if not already done, configures the data source to the specified image, | |
and preprocesses the image for feature extraction. It supports setting only one image at a time. | |
Args: | |
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing the image. | |
Raises: | |
AssertionError: If more than one image is attempted to be set. | |
Examples: | |
>>> predictor = SAM2Predictor() | |
>>> predictor.set_image("path/to/image.jpg") | |
>>> predictor.set_image(np.array([...])) # Using a numpy array | |
Notes: | |
- This method must be called before performing any inference on a new image. | |
- The method caches the extracted features for efficient subsequent inferences on the same image. | |
- Only one image can be set at a time. To process multiple images, call this method for each new image. | |
""" | |
if self.model is None: | |
self.setup_model(model=None) | |
self.setup_source(image) | |
assert len(self.dataset) == 1, "`set_image` only supports setting one image!" | |
for batch in self.dataset: | |
im = self.preprocess(batch[1]) | |
self.features = self.get_im_features(im) | |
break | |
def get_im_features(self, im): | |
"""Extracts image features from the SAM image encoder for subsequent processing.""" | |
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], ( | |
f"SAM 2 models only support square image size, but got {self.imgsz}." | |
) | |
self.model.set_imgsz(self.imgsz) | |
self._bb_feat_sizes = [[x // (4 * i) for x in self.imgsz] for i in [1, 2, 4]] | |
backbone_out = self.model.forward_image(im) | |
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) | |
if self.model.directly_add_no_mem_embed: | |
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed | |
feats = [ | |
feat.permute(1, 2, 0).view(1, -1, *feat_size) | |
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) | |
][::-1] | |
return {"image_embed": feats[-1], "high_res_feats": feats[:-1]} | |
class SAM2VideoPredictor(SAM2Predictor): | |
""" | |
SAM2VideoPredictor to handle user interactions with videos and manage inference states. | |
This class extends the functionality of SAM2Predictor to support video processing and maintains | |
the state of inference operations. It includes configurations for managing non-overlapping masks, | |
clearing memory for non-conditional inputs, and setting up callbacks for prediction events. | |
Attributes: | |
inference_state (Dict): A dictionary to store the current state of inference operations. | |
non_overlap_masks (bool): A flag indicating whether masks should be non-overlapping. | |
clear_non_cond_mem_around_input (bool): A flag to control clearing non-conditional memory around inputs. | |
clear_non_cond_mem_for_multi_obj (bool): A flag to control clearing non-conditional memory for multi-object scenarios. | |
callbacks (Dict): A dictionary of callbacks for various prediction lifecycle events. | |
Args: | |
cfg (Dict, Optional): Configuration settings for the predictor. Defaults to DEFAULT_CFG. | |
overrides (Dict, Optional): Additional configuration overrides. Defaults to None. | |
_callbacks (List, Optional): Custom callbacks to be added. Defaults to None. | |
Note: | |
The `fill_hole_area` attribute is defined but not used in the current implementation. | |
""" | |
# fill_hole_area = 8 # not used | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
""" | |
Initialize the predictor with configuration and optional overrides. | |
This constructor initializes the SAM2VideoPredictor with a given configuration, applies any | |
specified overrides, and sets up the inference state along with certain flags | |
that control the behavior of the predictor. | |
Args: | |
cfg (Dict): Configuration dictionary containing default settings. | |
overrides (Dict | None): Dictionary of values to override default configuration. | |
_callbacks (Dict | None): Dictionary of callback functions to customize behavior. | |
Examples: | |
>>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG) | |
>>> predictor_example_with_imgsz = SAM2VideoPredictor(overrides={"imgsz": 640}) | |
>>> predictor_example_with_callback = SAM2VideoPredictor(_callbacks={"on_predict_start": custom_callback}) | |
""" | |
super().__init__(cfg, overrides, _callbacks) | |
self.inference_state = {} | |
self.non_overlap_masks = True | |
self.clear_non_cond_mem_around_input = False | |
self.clear_non_cond_mem_for_multi_obj = False | |
self.callbacks["on_predict_start"].append(self.init_state) | |
def get_model(self): | |
""" | |
Retrieves and configures the model with binarization enabled. | |
Note: | |
This method overrides the base class implementation to set the binarize flag to True. | |
""" | |
model = super().get_model() | |
model.set_binarize(True) | |
return model | |
def inference(self, im, bboxes=None, points=None, labels=None, masks=None): | |
""" | |
Perform image segmentation inference based on the given input cues, using the currently loaded image. This | |
method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and | |
mask decoder for real-time and promptable segmentation tasks. | |
Args: | |
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W). | |
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format. | |
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels. | |
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background. | |
masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256. | |
Returns: | |
(np.ndarray): The output masks in shape CxHxW, where C is the number of generated masks. | |
(np.ndarray): An array of length C containing quality scores predicted by the model for each mask. | |
""" | |
# Override prompts if any stored in self.prompts | |
bboxes = self.prompts.pop("bboxes", bboxes) | |
points = self.prompts.pop("points", points) | |
masks = self.prompts.pop("masks", masks) | |
frame = self.dataset.frame | |
self.inference_state["im"] = im | |
output_dict = self.inference_state["output_dict"] | |
if len(output_dict["cond_frame_outputs"]) == 0: # initialize prompts | |
points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks) | |
if points is not None: | |
for i in range(len(points)): | |
self.add_new_prompts(obj_id=i, points=points[[i]], labels=labels[[i]], frame_idx=frame) | |
elif masks is not None: | |
for i in range(len(masks)): | |
self.add_new_prompts(obj_id=i, masks=masks[[i]], frame_idx=frame) | |
self.propagate_in_video_preflight() | |
consolidated_frame_inds = self.inference_state["consolidated_frame_inds"] | |
batch_size = len(self.inference_state["obj_idx_to_id"]) | |
if len(output_dict["cond_frame_outputs"]) == 0: | |
raise RuntimeError("No points are provided; please add points first") | |
if frame in consolidated_frame_inds["cond_frame_outputs"]: | |
storage_key = "cond_frame_outputs" | |
current_out = output_dict[storage_key][frame] | |
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1): | |
# clear non-conditioning memory of the surrounding frames | |
self._clear_non_cond_mem_around_input(frame) | |
elif frame in consolidated_frame_inds["non_cond_frame_outputs"]: | |
storage_key = "non_cond_frame_outputs" | |
current_out = output_dict[storage_key][frame] | |
else: | |
storage_key = "non_cond_frame_outputs" | |
current_out = self._run_single_frame_inference( | |
output_dict=output_dict, | |
frame_idx=frame, | |
batch_size=batch_size, | |
is_init_cond_frame=False, | |
point_inputs=None, | |
mask_inputs=None, | |
reverse=False, | |
run_mem_encoder=True, | |
) | |
output_dict[storage_key][frame] = current_out | |
# Create slices of per-object outputs for subsequent interaction with each | |
# individual object after tracking. | |
self._add_output_per_object(frame, current_out, storage_key) | |
self.inference_state["frames_already_tracked"].append(frame) | |
pred_masks = current_out["pred_masks"].flatten(0, 1) | |
pred_masks = pred_masks[(pred_masks > self.model.mask_threshold).sum((1, 2)) > 0] # filter blank masks | |
return pred_masks, torch.ones(len(pred_masks), dtype=pred_masks.dtype, device=pred_masks.device) | |
def postprocess(self, preds, img, orig_imgs): | |
""" | |
Post-processes the predictions to apply non-overlapping constraints if required. | |
This method extends the post-processing functionality by applying non-overlapping constraints | |
to the predicted masks if the `non_overlap_masks` flag is set to True. This ensures that | |
the masks do not overlap, which can be useful for certain applications. | |
Args: | |
preds (Tuple[torch.Tensor]): The predictions from the model. | |
img (torch.Tensor): The processed image tensor. | |
orig_imgs (List[np.ndarray]): The original images before processing. | |
Returns: | |
results (list): The post-processed predictions. | |
Note: | |
If `non_overlap_masks` is True, the method applies constraints to ensure non-overlapping masks. | |
""" | |
results = super().postprocess(preds, img, orig_imgs) | |
if self.non_overlap_masks: | |
for result in results: | |
if result.masks is None or len(result.masks) == 0: | |
continue | |
result.masks.data = self.model._apply_non_overlapping_constraints(result.masks.data.unsqueeze(0))[0] | |
return results | |
def add_new_prompts( | |
self, | |
obj_id, | |
points=None, | |
labels=None, | |
masks=None, | |
frame_idx=0, | |
): | |
""" | |
Adds new points or masks to a specific frame for a given object ID. | |
This method updates the inference state with new prompts (points or masks) for a specified | |
object and frame index. It ensures that the prompts are either points or masks, but not both, | |
and updates the internal state accordingly. It also handles the generation of new segmentations | |
based on the provided prompts and the existing state. | |
Args: | |
obj_id (int): The ID of the object to which the prompts are associated. | |
points (torch.Tensor, Optional): The coordinates of the points of interest. Defaults to None. | |
labels (torch.Tensor, Optional): The labels corresponding to the points. Defaults to None. | |
masks (torch.Tensor, optional): Binary masks for the object. Defaults to None. | |
frame_idx (int, optional): The index of the frame to which the prompts are applied. Defaults to 0. | |
Returns: | |
(tuple): A tuple containing the flattened predicted masks and a tensor of ones indicating the number of objects. | |
Raises: | |
AssertionError: If both `masks` and `points` are provided, or neither is provided. | |
Note: | |
- Only one type of prompt (either points or masks) can be added per call. | |
- If the frame is being tracked for the first time, it is treated as an initial conditioning frame. | |
- The method handles the consolidation of outputs and resizing of masks to the original video resolution. | |
""" | |
assert (masks is None) ^ (points is None), "'masks' and 'points' prompts are not compatible with each other." | |
obj_idx = self._obj_id_to_idx(obj_id) | |
point_inputs = None | |
pop_key = "point_inputs_per_obj" | |
if points is not None: | |
point_inputs = {"point_coords": points, "point_labels": labels} | |
self.inference_state["point_inputs_per_obj"][obj_idx][frame_idx] = point_inputs | |
pop_key = "mask_inputs_per_obj" | |
self.inference_state["mask_inputs_per_obj"][obj_idx][frame_idx] = masks | |
self.inference_state[pop_key][obj_idx].pop(frame_idx, None) | |
# If this frame hasn't been tracked before, we treat it as an initial conditioning | |
# frame, meaning that the inputs points are to generate segments on this frame without | |
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked), | |
# the input points will be used to correct the already tracked masks. | |
is_init_cond_frame = frame_idx not in self.inference_state["frames_already_tracked"] | |
obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx] | |
obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx] | |
# Add a frame to conditioning output if it's an initial conditioning frame or | |
# if the model sees all frames receiving clicks/mask as conditioning frames. | |
is_cond = is_init_cond_frame or self.model.add_all_frames_to_correct_as_cond | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
# Get any previously predicted mask logits on this object and feed it along with | |
# the new clicks into the SAM mask decoder. | |
prev_sam_mask_logits = None | |
# lookup temporary output dict first, which contains the most recent output | |
# (if not found, then lookup conditioning and non-conditioning frame output) | |
if point_inputs is not None: | |
prev_out = ( | |
obj_temp_output_dict[storage_key].get(frame_idx) | |
or obj_output_dict["cond_frame_outputs"].get(frame_idx) | |
or obj_output_dict["non_cond_frame_outputs"].get(frame_idx) | |
) | |
if prev_out is not None and prev_out.get("pred_masks") is not None: | |
prev_sam_mask_logits = prev_out["pred_masks"].to(device=self.device, non_blocking=True) | |
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. | |
prev_sam_mask_logits.clamp_(-32.0, 32.0) | |
current_out = self._run_single_frame_inference( | |
output_dict=obj_output_dict, # run on the slice of a single object | |
frame_idx=frame_idx, | |
batch_size=1, # run on the slice of a single object | |
is_init_cond_frame=is_init_cond_frame, | |
point_inputs=point_inputs, | |
mask_inputs=masks, | |
reverse=False, | |
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder | |
# at the beginning of `propagate_in_video` (after user finalize their clicks). This | |
# allows us to enforce non-overlapping constraints on all objects before encoding | |
# them into memory. | |
run_mem_encoder=False, | |
prev_sam_mask_logits=prev_sam_mask_logits, | |
) | |
# Add the output to the output dict (to be used as future memory) | |
obj_temp_output_dict[storage_key][frame_idx] = current_out | |
# Resize the output mask to the original video resolution | |
consolidated_out = self._consolidate_temp_output_across_obj( | |
frame_idx, | |
is_cond=is_cond, | |
run_mem_encoder=False, | |
) | |
pred_masks = consolidated_out["pred_masks"].flatten(0, 1) | |
return pred_masks.flatten(0, 1), torch.ones(1, dtype=pred_masks.dtype, device=pred_masks.device) | |
def propagate_in_video_preflight(self): | |
""" | |
Prepare inference_state and consolidate temporary outputs before tracking. | |
This method marks the start of tracking, disallowing the addition of new objects until the session is reset. | |
It consolidates temporary outputs from `temp_output_dict_per_obj` and merges them into `output_dict`. | |
Additionally, it clears non-conditioning memory around input frames and ensures that the state is consistent | |
with the provided inputs. | |
""" | |
# Tracking has started and we don't allow adding new objects until session is reset. | |
self.inference_state["tracking_has_started"] = True | |
batch_size = len(self.inference_state["obj_idx_to_id"]) | |
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and | |
# add them into "output_dict". | |
temp_output_dict_per_obj = self.inference_state["temp_output_dict_per_obj"] | |
output_dict = self.inference_state["output_dict"] | |
# "consolidated_frame_inds" contains indices of those frames where consolidated | |
# temporary outputs have been added (either in this call or any previous calls | |
# to `propagate_in_video_preflight`). | |
consolidated_frame_inds = self.inference_state["consolidated_frame_inds"] | |
for is_cond in {False, True}: | |
# Separately consolidate conditioning and non-conditioning temp outputs | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
# Find all the frames that contain temporary outputs for any objects | |
# (these should be the frames that have just received clicks for mask inputs | |
# via `add_new_points` or `add_new_mask`) | |
temp_frame_inds = set() | |
for obj_temp_output_dict in temp_output_dict_per_obj.values(): | |
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) | |
consolidated_frame_inds[storage_key].update(temp_frame_inds) | |
# consolidate the temporary output across all objects on this frame | |
for frame_idx in temp_frame_inds: | |
consolidated_out = self._consolidate_temp_output_across_obj( | |
frame_idx, is_cond=is_cond, run_mem_encoder=True | |
) | |
# merge them into "output_dict" and also create per-object slices | |
output_dict[storage_key][frame_idx] = consolidated_out | |
self._add_output_per_object(frame_idx, consolidated_out, storage_key) | |
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1): | |
# clear non-conditioning memory of the surrounding frames | |
self._clear_non_cond_mem_around_input(frame_idx) | |
# clear temporary outputs in `temp_output_dict_per_obj` | |
for obj_temp_output_dict in temp_output_dict_per_obj.values(): | |
obj_temp_output_dict[storage_key].clear() | |
# edge case: if an output is added to "cond_frame_outputs", we remove any prior | |
# output on the same frame in "non_cond_frame_outputs" | |
for frame_idx in output_dict["cond_frame_outputs"]: | |
output_dict["non_cond_frame_outputs"].pop(frame_idx, None) | |
for obj_output_dict in self.inference_state["output_dict_per_obj"].values(): | |
for frame_idx in obj_output_dict["cond_frame_outputs"]: | |
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) | |
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: | |
assert frame_idx in output_dict["cond_frame_outputs"] | |
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) | |
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames | |
# with either points or mask inputs (which should be true under a correct workflow). | |
all_consolidated_frame_inds = ( | |
consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"] | |
) | |
input_frames_inds = set() | |
for point_inputs_per_frame in self.inference_state["point_inputs_per_obj"].values(): | |
input_frames_inds.update(point_inputs_per_frame.keys()) | |
for mask_inputs_per_frame in self.inference_state["mask_inputs_per_obj"].values(): | |
input_frames_inds.update(mask_inputs_per_frame.keys()) | |
assert all_consolidated_frame_inds == input_frames_inds | |
def init_state(predictor): | |
""" | |
Initialize an inference state for the predictor. | |
This function sets up the initial state required for performing inference on video data. | |
It includes initializing various dictionaries and ordered dictionaries that will store | |
inputs, outputs, and other metadata relevant to the tracking process. | |
Args: | |
predictor (SAM2VideoPredictor): The predictor object for which to initialize the state. | |
""" | |
if len(predictor.inference_state) > 0: # means initialized | |
return | |
assert predictor.dataset is not None | |
assert predictor.dataset.mode == "video" | |
inference_state = { | |
"num_frames": predictor.dataset.frames, | |
"point_inputs_per_obj": {}, # inputs points on each frame | |
"mask_inputs_per_obj": {}, # inputs mask on each frame | |
"constants": {}, # values that don't change across frames (so we only need to hold one copy of them) | |
# mapping between client-side object id and model-side object index | |
"obj_id_to_idx": OrderedDict(), | |
"obj_idx_to_id": OrderedDict(), | |
"obj_ids": [], | |
# A storage to hold the model's tracking results and states on each frame | |
"output_dict": { | |
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
}, | |
# Slice (view) of each object tracking results, sharing the same memory with "output_dict" | |
"output_dict_per_obj": {}, | |
# A temporary storage to hold new outputs when user interact with a frame | |
# to add clicks or mask (it's merged into "output_dict" before propagation starts) | |
"temp_output_dict_per_obj": {}, | |
# Frames that already holds consolidated outputs from click or mask inputs | |
# (we directly use their consolidated outputs during tracking) | |
"consolidated_frame_inds": { | |
"cond_frame_outputs": set(), # set containing frame indices | |
"non_cond_frame_outputs": set(), # set containing frame indices | |
}, | |
# metadata for each tracking frame (e.g. which direction it's tracked) | |
"tracking_has_started": False, | |
"frames_already_tracked": [], | |
} | |
predictor.inference_state = inference_state | |
def get_im_features(self, im, batch=1): | |
""" | |
Extracts and processes image features using SAM2's image encoder for subsequent segmentation tasks. | |
Args: | |
im (torch.Tensor): The input image tensor. | |
batch (int, optional): The batch size for expanding features if there are multiple prompts. Defaults to 1. | |
Returns: | |
vis_feats (torch.Tensor): The visual features extracted from the image. | |
vis_pos_embed (torch.Tensor): The positional embeddings for the visual features. | |
feat_sizes (List(Tuple[int])): A list containing the sizes of the extracted features. | |
Note: | |
- If `batch` is greater than 1, the features are expanded to fit the batch size. | |
- The method leverages the model's `_prepare_backbone_features` method to prepare the backbone features. | |
""" | |
backbone_out = self.model.forward_image(im) | |
if batch > 1: # expand features if there's more than one prompt | |
for i, feat in enumerate(backbone_out["backbone_fpn"]): | |
backbone_out["backbone_fpn"][i] = feat.expand(batch, -1, -1, -1) | |
for i, pos in enumerate(backbone_out["vision_pos_enc"]): | |
pos = pos.expand(batch, -1, -1, -1) | |
backbone_out["vision_pos_enc"][i] = pos | |
_, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out) | |
return vis_feats, vis_pos_embed, feat_sizes | |
def _obj_id_to_idx(self, obj_id): | |
""" | |
Map client-side object id to model-side object index. | |
Args: | |
obj_id (int): The unique identifier of the object provided by the client side. | |
Returns: | |
obj_idx (int): The index of the object on the model side. | |
Raises: | |
RuntimeError: If an attempt is made to add a new object after tracking has started. | |
Note: | |
- The method updates or retrieves mappings between object IDs and indices stored in | |
`inference_state`. | |
- It ensures that new objects can only be added before tracking commences. | |
- It maintains two-way mappings between IDs and indices (`obj_id_to_idx` and `obj_idx_to_id`). | |
- Additional data structures are initialized for the new object to store inputs and outputs. | |
""" | |
obj_idx = self.inference_state["obj_id_to_idx"].get(obj_id, None) | |
if obj_idx is not None: | |
return obj_idx | |
# This is a new object id not sent to the server before. We only allow adding | |
# new objects *before* the tracking starts. | |
allow_new_object = not self.inference_state["tracking_has_started"] | |
if allow_new_object: | |
# get the next object slot | |
obj_idx = len(self.inference_state["obj_id_to_idx"]) | |
self.inference_state["obj_id_to_idx"][obj_id] = obj_idx | |
self.inference_state["obj_idx_to_id"][obj_idx] = obj_id | |
self.inference_state["obj_ids"] = list(self.inference_state["obj_id_to_idx"]) | |
# set up input and output structures for this object | |
self.inference_state["point_inputs_per_obj"][obj_idx] = {} | |
self.inference_state["mask_inputs_per_obj"][obj_idx] = {} | |
self.inference_state["output_dict_per_obj"][obj_idx] = { | |
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
} | |
self.inference_state["temp_output_dict_per_obj"][obj_idx] = { | |
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
} | |
return obj_idx | |
else: | |
raise RuntimeError( | |
f"Cannot add new object id {obj_id} after tracking starts. " | |
f"All existing object ids: {self.inference_state['obj_ids']}. " | |
f"Please call 'reset_state' to restart from scratch." | |
) | |
def _run_single_frame_inference( | |
self, | |
output_dict, | |
frame_idx, | |
batch_size, | |
is_init_cond_frame, | |
point_inputs, | |
mask_inputs, | |
reverse, | |
run_mem_encoder, | |
prev_sam_mask_logits=None, | |
): | |
""" | |
Run tracking on a single frame based on current inputs and previous memory. | |
Args: | |
output_dict (Dict): The dictionary containing the output states of the tracking process. | |
frame_idx (int): The index of the current frame. | |
batch_size (int): The batch size for processing the frame. | |
is_init_cond_frame (bool): Indicates if the current frame is an initial conditioning frame. | |
point_inputs (Dict, Optional): Input points and their labels. Defaults to None. | |
mask_inputs (torch.Tensor, Optional): Input binary masks. Defaults to None. | |
reverse (bool): Indicates if the tracking should be performed in reverse order. | |
run_mem_encoder (bool): Indicates if the memory encoder should be executed. | |
prev_sam_mask_logits (torch.Tensor, Optional): Previous mask logits for the current object. Defaults to None. | |
Returns: | |
current_out (dict): A dictionary containing the output of the tracking step, including updated features and predictions. | |
Raises: | |
AssertionError: If both `point_inputs` and `mask_inputs` are provided, or neither is provided. | |
Note: | |
- The method assumes that `point_inputs` and `mask_inputs` are mutually exclusive. | |
- The method retrieves image features using the `get_im_features` method. | |
- The `maskmem_pos_enc` is assumed to be constant across frames, hence only one copy is stored. | |
- The `fill_holes_in_mask_scores` function is commented out and currently unsupported due to CUDA extension requirements. | |
""" | |
# Retrieve correct image features | |
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features( | |
self.inference_state["im"], batch_size | |
) | |
# point and mask should not appear as input simultaneously on the same frame | |
assert point_inputs is None or mask_inputs is None | |
current_out = self.model.track_step( | |
frame_idx=frame_idx, | |
is_init_cond_frame=is_init_cond_frame, | |
current_vision_feats=current_vision_feats, | |
current_vision_pos_embeds=current_vision_pos_embeds, | |
feat_sizes=feat_sizes, | |
point_inputs=point_inputs, | |
mask_inputs=mask_inputs, | |
output_dict=output_dict, | |
num_frames=self.inference_state["num_frames"], | |
track_in_reverse=reverse, | |
run_mem_encoder=run_mem_encoder, | |
prev_sam_mask_logits=prev_sam_mask_logits, | |
) | |
maskmem_features = current_out["maskmem_features"] | |
if maskmem_features is not None: | |
current_out["maskmem_features"] = maskmem_features.to( | |
dtype=torch.float16, device=self.device, non_blocking=True | |
) | |
# NOTE: Do not support the `fill_holes_in_mask_scores` function since it needs cuda extensions | |
# potentially fill holes in the predicted masks | |
# if self.fill_hole_area > 0: | |
# pred_masks = current_out["pred_masks"].to(self.device, non_blocking=True) | |
# pred_masks = fill_holes_in_mask_scores(pred_masks, self.fill_hole_area) | |
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it | |
current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"]) | |
return current_out | |
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc): | |
""" | |
Caches and manages the positional encoding for mask memory across frames and objects. | |
This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for | |
mask memory, which is constant across frames and objects, thus reducing the amount of | |
redundant information stored during an inference session. It checks if the positional | |
encoding has already been cached; if not, it caches a slice of the provided encoding. | |
If the batch size is greater than one, it expands the cached positional encoding to match | |
the current batch size. | |
Args: | |
out_maskmem_pos_enc (List[torch.Tensor] or None): The positional encoding for mask memory. | |
Should be a list of tensors or None. | |
Returns: | |
out_maskmem_pos_enc (List[torch.Tensor]): The positional encoding for mask memory, either cached or expanded. | |
Note: | |
- The method assumes that `out_maskmem_pos_enc` is a list of tensors or None. | |
- Only a single object's slice is cached since the encoding is the same across objects. | |
- The method checks if the positional encoding has already been cached in the session's constants. | |
- If the batch size is greater than one, the cached encoding is expanded to fit the batch size. | |
""" | |
model_constants = self.inference_state["constants"] | |
# "out_maskmem_pos_enc" should be either a list of tensors or None | |
if out_maskmem_pos_enc is not None: | |
if "maskmem_pos_enc" not in model_constants: | |
assert isinstance(out_maskmem_pos_enc, list) | |
# only take the slice for one object, since it's same across objects | |
maskmem_pos_enc = [x[:1].clone() for x in out_maskmem_pos_enc] | |
model_constants["maskmem_pos_enc"] = maskmem_pos_enc | |
else: | |
maskmem_pos_enc = model_constants["maskmem_pos_enc"] | |
# expand the cached maskmem_pos_enc to the actual batch size | |
batch_size = out_maskmem_pos_enc[0].size(0) | |
if batch_size > 1: | |
out_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc] | |
return out_maskmem_pos_enc | |
def _consolidate_temp_output_across_obj( | |
self, | |
frame_idx, | |
is_cond=False, | |
run_mem_encoder=False, | |
): | |
""" | |
Consolidates per-object temporary outputs into a single output for all objects. | |
This method combines the temporary outputs for each object on a given frame into a unified | |
output. It fills in any missing objects either from the main output dictionary or leaves | |
placeholders if they do not exist in the main output. Optionally, it can re-run the memory | |
encoder after applying non-overlapping constraints to the object scores. | |
Args: | |
frame_idx (int): The index of the frame for which to consolidate outputs. | |
is_cond (bool, Optional): Indicates if the frame is considered a conditioning frame. | |
Defaults to False. | |
run_mem_encoder (bool, Optional): Specifies whether to run the memory encoder after | |
consolidating the outputs. Defaults to False. | |
Returns: | |
consolidated_out (dict): A consolidated output dictionary containing the combined results for all objects. | |
Note: | |
- The method initializes the consolidated output with placeholder values for missing objects. | |
- It searches for outputs in both the temporary and main output dictionaries. | |
- If `run_mem_encoder` is True, it applies non-overlapping constraints and re-runs the memory encoder. | |
- The `maskmem_features` and `maskmem_pos_enc` are only populated when `run_mem_encoder` is True. | |
""" | |
batch_size = len(self.inference_state["obj_idx_to_id"]) | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc" | |
# will be added when rerunning the memory encoder after applying non-overlapping | |
# constraints to object scores. Its "pred_masks" are prefilled with a large | |
# negative value (NO_OBJ_SCORE) to represent missing objects. | |
consolidated_out = { | |
"maskmem_features": None, | |
"maskmem_pos_enc": None, | |
"pred_masks": torch.full( | |
size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4), | |
fill_value=-1024.0, | |
dtype=torch.float32, | |
device=self.device, | |
), | |
"obj_ptr": torch.full( | |
size=(batch_size, self.model.hidden_dim), | |
fill_value=-1024.0, | |
dtype=torch.float32, | |
device=self.device, | |
), | |
"object_score_logits": torch.full( | |
size=(batch_size, 1), | |
# default to 10.0 for object_score_logits, i.e. assuming the object is | |
# present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder` | |
fill_value=10.0, | |
dtype=torch.float32, | |
device=self.device, | |
), | |
} | |
for obj_idx in range(batch_size): | |
obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx] | |
obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx] | |
out = ( | |
obj_temp_output_dict[storage_key].get(frame_idx) | |
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame, | |
# we fall back and look up its previous output in "output_dict_per_obj". | |
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in | |
# "output_dict_per_obj" to find a previous output for this object. | |
or obj_output_dict["cond_frame_outputs"].get(frame_idx) | |
or obj_output_dict["non_cond_frame_outputs"].get(frame_idx) | |
) | |
# If the object doesn't appear in "output_dict_per_obj" either, we skip it | |
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE | |
# placeholder above) and set its object pointer to be a dummy pointer. | |
if out is None: | |
# Fill in dummy object pointers for those objects without any inputs or | |
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`, | |
# i.e. when we need to build the memory for tracking). | |
if run_mem_encoder: | |
# fill object pointer with a dummy pointer (based on an empty mask) | |
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = self._get_empty_mask_ptr(frame_idx) | |
continue | |
# Add the temporary object output mask to consolidated output mask | |
consolidated_out["pred_masks"][obj_idx : obj_idx + 1] = out["pred_masks"] | |
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] | |
# Optionally, apply non-overlapping constraints on the consolidated scores and rerun the memory encoder | |
if run_mem_encoder: | |
high_res_masks = F.interpolate( | |
consolidated_out["pred_masks"], | |
size=self.imgsz, | |
mode="bilinear", | |
align_corners=False, | |
) | |
if self.model.non_overlap_masks_for_mem_enc: | |
high_res_masks = self.model._apply_non_overlapping_constraints(high_res_masks) | |
consolidated_out["maskmem_features"], consolidated_out["maskmem_pos_enc"] = self._run_memory_encoder( | |
batch_size=batch_size, | |
high_res_masks=high_res_masks, | |
is_mask_from_pts=True, # these frames are what the user interacted with | |
object_score_logits=consolidated_out["object_score_logits"], | |
) | |
return consolidated_out | |
def _get_empty_mask_ptr(self, frame_idx): | |
""" | |
Get a dummy object pointer based on an empty mask on the current frame. | |
Args: | |
frame_idx (int): The index of the current frame for which to generate the dummy object pointer. | |
Returns: | |
(torch.Tensor): A tensor representing the dummy object pointer generated from the empty mask. | |
""" | |
# Retrieve correct image features | |
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(self.inference_state["im"]) | |
# Feed the empty mask and image feature above to get a dummy object pointer | |
current_out = self.model.track_step( | |
frame_idx=frame_idx, | |
is_init_cond_frame=True, | |
current_vision_feats=current_vision_feats, | |
current_vision_pos_embeds=current_vision_pos_embeds, | |
feat_sizes=feat_sizes, | |
point_inputs=None, | |
# A dummy (empty) mask with a single object | |
mask_inputs=torch.zeros((1, 1, *self.imgsz), dtype=torch.float32, device=self.device), | |
output_dict={}, | |
num_frames=self.inference_state["num_frames"], | |
track_in_reverse=False, | |
run_mem_encoder=False, | |
prev_sam_mask_logits=None, | |
) | |
return current_out["obj_ptr"] | |
def _run_memory_encoder(self, batch_size, high_res_masks, object_score_logits, is_mask_from_pts): | |
""" | |
Run the memory encoder on masks. | |
This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their | |
memory also needs to be computed again with the memory encoder. | |
Args: | |
batch_size (int): The batch size for processing the frame. | |
high_res_masks (torch.Tensor): High-resolution masks for which to compute the memory. | |
object_score_logits (torch.Tensor): Logits representing the object scores. | |
is_mask_from_pts (bool): Indicates if the mask is derived from point interactions. | |
Returns: | |
(tuple[torch.Tensor, torch.Tensor]): A tuple containing the encoded mask features and positional encoding. | |
""" | |
# Retrieve correct image features | |
current_vision_feats, _, feat_sizes = self.get_im_features(self.inference_state["im"], batch_size) | |
maskmem_features, maskmem_pos_enc = self.model._encode_new_memory( | |
current_vision_feats=current_vision_feats, | |
feat_sizes=feat_sizes, | |
pred_masks_high_res=high_res_masks, | |
is_mask_from_pts=is_mask_from_pts, | |
object_score_logits=object_score_logits, | |
) | |
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it | |
maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc) | |
return maskmem_features.to(dtype=torch.float16, device=self.device, non_blocking=True), maskmem_pos_enc | |
def _add_output_per_object(self, frame_idx, current_out, storage_key): | |
""" | |
Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj. | |
The resulting slices share the same tensor storage. | |
Args: | |
frame_idx (int): The index of the current frame. | |
current_out (Dict): The current output dictionary containing multi-object outputs. | |
storage_key (str): The key used to store the output in the per-object output dictionary. | |
""" | |
maskmem_features = current_out["maskmem_features"] | |
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) | |
maskmem_pos_enc = current_out["maskmem_pos_enc"] | |
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) | |
for obj_idx, obj_output_dict in self.inference_state["output_dict_per_obj"].items(): | |
obj_slice = slice(obj_idx, obj_idx + 1) | |
obj_out = { | |
"maskmem_features": None, | |
"maskmem_pos_enc": None, | |
"pred_masks": current_out["pred_masks"][obj_slice], | |
"obj_ptr": current_out["obj_ptr"][obj_slice], | |
} | |
if maskmem_features is not None: | |
obj_out["maskmem_features"] = maskmem_features[obj_slice] | |
if maskmem_pos_enc is not None: | |
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] | |
obj_output_dict[storage_key][frame_idx] = obj_out | |
def _clear_non_cond_mem_around_input(self, frame_idx): | |
""" | |
Remove the non-conditioning memory around the input frame. | |
When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain outdated | |
object appearance information and could confuse the model. This method clears those non-conditioning memories | |
surrounding the interacted frame to avoid giving the model both old and new information about the object. | |
Args: | |
frame_idx (int): The index of the current frame where user interaction occurred. | |
""" | |
r = self.model.memory_temporal_stride_for_eval | |
frame_idx_begin = frame_idx - r * self.model.num_maskmem | |
frame_idx_end = frame_idx + r * self.model.num_maskmem | |
for t in range(frame_idx_begin, frame_idx_end + 1): | |
self.inference_state["output_dict"]["non_cond_frame_outputs"].pop(t, None) | |
for obj_output_dict in self.inference_state["output_dict_per_obj"].values(): | |
obj_output_dict["non_cond_frame_outputs"].pop(t, None) | |