Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
import copy | |
from typing import Optional | |
import torch | |
from torch import Tensor, nn | |
from .blocks import RoPEAttention | |
class MemoryAttentionLayer(nn.Module): | |
""" | |
Implements a memory attention layer with self-attention and cross-attention mechanisms for neural networks. | |
This class combines self-attention, cross-attention, and feedforward components to process input tensors and | |
generate memory-based attention outputs. | |
Attributes: | |
d_model (int): Dimensionality of the model. | |
dim_feedforward (int): Dimensionality of the feedforward network. | |
dropout_value (float): Dropout rate for regularization. | |
self_attn (RoPEAttention): Self-attention mechanism using RoPE (Rotary Position Embedding). | |
cross_attn_image (RoPEAttention): Cross-attention mechanism for image processing. | |
linear1 (nn.Linear): First linear layer of the feedforward network. | |
linear2 (nn.Linear): Second linear layer of the feedforward network. | |
norm1 (nn.LayerNorm): Layer normalization for self-attention output. | |
norm2 (nn.LayerNorm): Layer normalization for cross-attention output. | |
norm3 (nn.LayerNorm): Layer normalization for feedforward network output. | |
dropout1 (nn.Dropout): Dropout layer after self-attention. | |
dropout2 (nn.Dropout): Dropout layer after cross-attention. | |
dropout3 (nn.Dropout): Dropout layer after feedforward network. | |
activation (nn.ReLU): Activation function for the feedforward network. | |
pos_enc_at_attn (bool): Flag to add positional encoding at attention. | |
pos_enc_at_cross_attn_queries (bool): Flag to add positional encoding to cross-attention queries. | |
pos_enc_at_cross_attn_keys (bool): Flag to add positional encoding to cross-attention keys. | |
Methods: | |
forward: Performs the full memory attention operation on input tensors. | |
_forward_sa: Performs self-attention on input tensor. | |
_forward_ca: Performs cross-attention between target and memory tensors. | |
Examples: | |
>>> layer = MemoryAttentionLayer(d_model=256, dim_feedforward=2048, dropout=0.1) | |
>>> tgt = torch.randn(1, 100, 256) | |
>>> memory = torch.randn(1, 100, 64) | |
>>> pos = torch.randn(1, 100, 256) | |
>>> query_pos = torch.randn(1, 100, 256) | |
>>> output = layer(tgt, memory, pos, query_pos) | |
>>> print(output.shape) | |
torch.Size([1, 100, 256]) | |
""" | |
def __init__( | |
self, | |
d_model: int = 256, | |
dim_feedforward: int = 2048, | |
dropout: float = 0.1, | |
pos_enc_at_attn: bool = False, | |
pos_enc_at_cross_attn_keys: bool = True, | |
pos_enc_at_cross_attn_queries: bool = False, | |
): | |
"""Initializes a memory attention layer with self-attention, cross-attention, and feedforward components.""" | |
super().__init__() | |
self.d_model = d_model | |
self.dim_feedforward = dim_feedforward | |
self.dropout_value = dropout | |
self.self_attn = RoPEAttention(embedding_dim=256, num_heads=1, downsample_rate=1) | |
self.cross_attn_image = RoPEAttention( | |
rope_k_repeat=True, | |
embedding_dim=256, | |
num_heads=1, | |
downsample_rate=1, | |
kv_in_dim=64, | |
) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = nn.ReLU() | |
# Where to add pos enc | |
self.pos_enc_at_attn = pos_enc_at_attn | |
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries | |
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys | |
def _forward_sa(self, tgt, query_pos): | |
"""Performs self-attention on input tensor using positional encoding and RoPE attention mechanism.""" | |
tgt2 = self.norm1(tgt) | |
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 | |
tgt2 = self.self_attn(q, k, v=tgt2) | |
tgt = tgt + self.dropout1(tgt2) | |
return tgt | |
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): | |
"""Performs cross-attention between target and memory tensors using RoPEAttention mechanism.""" | |
kwds = {} | |
if num_k_exclude_rope > 0: | |
assert isinstance(self.cross_attn_image, RoPEAttention) | |
kwds = {"num_k_exclude_rope": num_k_exclude_rope} | |
# Cross-Attention | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.cross_attn_image( | |
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, | |
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, | |
v=memory, | |
**kwds, | |
) | |
tgt = tgt + self.dropout2(tgt2) | |
return tgt | |
def forward( | |
self, | |
tgt, | |
memory, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None, | |
num_k_exclude_rope: int = 0, | |
) -> torch.Tensor: | |
"""Processes input tensors using self-attention, cross-attention, and MLP for memory-based attention.""" | |
tgt = self._forward_sa(tgt, query_pos) | |
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) | |
# MLP | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt | |
class MemoryAttention(nn.Module): | |
""" | |
Memory attention module for processing sequential data with self and cross-attention mechanisms. | |
This class implements a multi-layer attention mechanism that combines self-attention and cross-attention | |
for processing sequential data, particularly useful in transformer-like architectures. | |
Attributes: | |
d_model (int): The dimension of the model's hidden state. | |
layers (nn.ModuleList): A list of MemoryAttentionLayer modules. | |
num_layers (int): The number of attention layers. | |
norm (nn.LayerNorm): Layer normalization applied to the output. | |
pos_enc_at_input (bool): Whether to apply positional encoding at the input. | |
batch_first (bool): Whether the input tensors are in batch-first format. | |
Methods: | |
forward: Processes input tensors through the attention layers. | |
Examples: | |
>>> d_model = 256 | |
>>> layer = MemoryAttentionLayer(d_model) | |
>>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3) | |
>>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model) | |
>>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model) | |
>>> curr_pos = torch.randn(10, 32, d_model) | |
>>> memory_pos = torch.randn(20, 32, d_model) | |
>>> output = attention(curr, memory, curr_pos, memory_pos) | |
>>> print(output.shape) | |
torch.Size([10, 32, 256]) | |
""" | |
def __init__( | |
self, | |
d_model: int, | |
pos_enc_at_input: bool, | |
layer: nn.Module, | |
num_layers: int, | |
batch_first: bool = True, # Do layers expect batch first input? | |
): | |
"""Initializes MemoryAttention module with layers and normalization for attention processing.""" | |
super().__init__() | |
self.d_model = d_model | |
self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)]) | |
self.num_layers = num_layers | |
self.norm = nn.LayerNorm(d_model) | |
self.pos_enc_at_input = pos_enc_at_input | |
self.batch_first = batch_first | |
def forward( | |
self, | |
curr: torch.Tensor, # self-attention inputs | |
memory: torch.Tensor, # cross-attention inputs | |
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs | |
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs | |
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens* | |
): | |
"""Processes input tensors through multiple attention layers, applying self and cross-attention mechanisms.""" | |
if isinstance(curr, list): | |
assert isinstance(curr_pos, list) | |
assert len(curr) == len(curr_pos) == 1 | |
curr, curr_pos = ( | |
curr[0], | |
curr_pos[0], | |
) | |
assert curr.shape[1] == memory.shape[1], "Batch size must be the same for curr and memory" | |
output = curr | |
if self.pos_enc_at_input and curr_pos is not None: | |
output = output + 0.1 * curr_pos | |
if self.batch_first: | |
# Convert to batch first | |
output = output.transpose(0, 1) | |
curr_pos = curr_pos.transpose(0, 1) | |
memory = memory.transpose(0, 1) | |
memory_pos = memory_pos.transpose(0, 1) | |
for layer in self.layers: | |
kwds = {} | |
if isinstance(layer.cross_attn_image, RoPEAttention): | |
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} | |
output = layer( | |
tgt=output, | |
memory=memory, | |
pos=memory_pos, | |
query_pos=curr_pos, | |
**kwds, | |
) | |
normed_output = self.norm(output) | |
if self.batch_first: | |
# Convert back to seq first | |
normed_output = normed_output.transpose(0, 1) | |
curr_pos = curr_pos.transpose(0, 1) | |
return normed_output | |