sunsmarterjieleaf's picture
Upload 315 files
1999a98 verified
raw
history blame
9.75 kB
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import copy
from typing import Optional
import torch
from torch import Tensor, nn
from .blocks import RoPEAttention
class MemoryAttentionLayer(nn.Module):
"""
Implements a memory attention layer with self-attention and cross-attention mechanisms for neural networks.
This class combines self-attention, cross-attention, and feedforward components to process input tensors and
generate memory-based attention outputs.
Attributes:
d_model (int): Dimensionality of the model.
dim_feedforward (int): Dimensionality of the feedforward network.
dropout_value (float): Dropout rate for regularization.
self_attn (RoPEAttention): Self-attention mechanism using RoPE (Rotary Position Embedding).
cross_attn_image (RoPEAttention): Cross-attention mechanism for image processing.
linear1 (nn.Linear): First linear layer of the feedforward network.
linear2 (nn.Linear): Second linear layer of the feedforward network.
norm1 (nn.LayerNorm): Layer normalization for self-attention output.
norm2 (nn.LayerNorm): Layer normalization for cross-attention output.
norm3 (nn.LayerNorm): Layer normalization for feedforward network output.
dropout1 (nn.Dropout): Dropout layer after self-attention.
dropout2 (nn.Dropout): Dropout layer after cross-attention.
dropout3 (nn.Dropout): Dropout layer after feedforward network.
activation (nn.ReLU): Activation function for the feedforward network.
pos_enc_at_attn (bool): Flag to add positional encoding at attention.
pos_enc_at_cross_attn_queries (bool): Flag to add positional encoding to cross-attention queries.
pos_enc_at_cross_attn_keys (bool): Flag to add positional encoding to cross-attention keys.
Methods:
forward: Performs the full memory attention operation on input tensors.
_forward_sa: Performs self-attention on input tensor.
_forward_ca: Performs cross-attention between target and memory tensors.
Examples:
>>> layer = MemoryAttentionLayer(d_model=256, dim_feedforward=2048, dropout=0.1)
>>> tgt = torch.randn(1, 100, 256)
>>> memory = torch.randn(1, 100, 64)
>>> pos = torch.randn(1, 100, 256)
>>> query_pos = torch.randn(1, 100, 256)
>>> output = layer(tgt, memory, pos, query_pos)
>>> print(output.shape)
torch.Size([1, 100, 256])
"""
def __init__(
self,
d_model: int = 256,
dim_feedforward: int = 2048,
dropout: float = 0.1,
pos_enc_at_attn: bool = False,
pos_enc_at_cross_attn_keys: bool = True,
pos_enc_at_cross_attn_queries: bool = False,
):
"""Initializes a memory attention layer with self-attention, cross-attention, and feedforward components."""
super().__init__()
self.d_model = d_model
self.dim_feedforward = dim_feedforward
self.dropout_value = dropout
self.self_attn = RoPEAttention(embedding_dim=256, num_heads=1, downsample_rate=1)
self.cross_attn_image = RoPEAttention(
rope_k_repeat=True,
embedding_dim=256,
num_heads=1,
downsample_rate=1,
kv_in_dim=64,
)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = nn.ReLU()
# Where to add pos enc
self.pos_enc_at_attn = pos_enc_at_attn
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
def _forward_sa(self, tgt, query_pos):
"""Performs self-attention on input tensor using positional encoding and RoPE attention mechanism."""
tgt2 = self.norm1(tgt)
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
tgt2 = self.self_attn(q, k, v=tgt2)
tgt = tgt + self.dropout1(tgt2)
return tgt
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
"""Performs cross-attention between target and memory tensors using RoPEAttention mechanism."""
kwds = {}
if num_k_exclude_rope > 0:
assert isinstance(self.cross_attn_image, RoPEAttention)
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
# Cross-Attention
tgt2 = self.norm2(tgt)
tgt2 = self.cross_attn_image(
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
v=memory,
**kwds,
)
tgt = tgt + self.dropout2(tgt2)
return tgt
def forward(
self,
tgt,
memory,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
num_k_exclude_rope: int = 0,
) -> torch.Tensor:
"""Processes input tensors using self-attention, cross-attention, and MLP for memory-based attention."""
tgt = self._forward_sa(tgt, query_pos)
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
# MLP
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
class MemoryAttention(nn.Module):
"""
Memory attention module for processing sequential data with self and cross-attention mechanisms.
This class implements a multi-layer attention mechanism that combines self-attention and cross-attention
for processing sequential data, particularly useful in transformer-like architectures.
Attributes:
d_model (int): The dimension of the model's hidden state.
layers (nn.ModuleList): A list of MemoryAttentionLayer modules.
num_layers (int): The number of attention layers.
norm (nn.LayerNorm): Layer normalization applied to the output.
pos_enc_at_input (bool): Whether to apply positional encoding at the input.
batch_first (bool): Whether the input tensors are in batch-first format.
Methods:
forward: Processes input tensors through the attention layers.
Examples:
>>> d_model = 256
>>> layer = MemoryAttentionLayer(d_model)
>>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
>>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
>>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
>>> curr_pos = torch.randn(10, 32, d_model)
>>> memory_pos = torch.randn(20, 32, d_model)
>>> output = attention(curr, memory, curr_pos, memory_pos)
>>> print(output.shape)
torch.Size([10, 32, 256])
"""
def __init__(
self,
d_model: int,
pos_enc_at_input: bool,
layer: nn.Module,
num_layers: int,
batch_first: bool = True, # Do layers expect batch first input?
):
"""Initializes MemoryAttention module with layers and normalization for attention processing."""
super().__init__()
self.d_model = d_model
self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])
self.num_layers = num_layers
self.norm = nn.LayerNorm(d_model)
self.pos_enc_at_input = pos_enc_at_input
self.batch_first = batch_first
def forward(
self,
curr: torch.Tensor, # self-attention inputs
memory: torch.Tensor, # cross-attention inputs
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
):
"""Processes input tensors through multiple attention layers, applying self and cross-attention mechanisms."""
if isinstance(curr, list):
assert isinstance(curr_pos, list)
assert len(curr) == len(curr_pos) == 1
curr, curr_pos = (
curr[0],
curr_pos[0],
)
assert curr.shape[1] == memory.shape[1], "Batch size must be the same for curr and memory"
output = curr
if self.pos_enc_at_input and curr_pos is not None:
output = output + 0.1 * curr_pos
if self.batch_first:
# Convert to batch first
output = output.transpose(0, 1)
curr_pos = curr_pos.transpose(0, 1)
memory = memory.transpose(0, 1)
memory_pos = memory_pos.transpose(0, 1)
for layer in self.layers:
kwds = {}
if isinstance(layer.cross_attn_image, RoPEAttention):
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
output = layer(
tgt=output,
memory=memory,
pos=memory_pos,
query_pos=curr_pos,
**kwds,
)
normed_output = self.norm(output)
if self.batch_first:
# Convert back to seq first
normed_output = normed_output.transpose(0, 1)
curr_pos = curr_pos.transpose(0, 1)
return normed_output