File size: 41,372 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# --------------------------------------------------------
# TinyViT Model Architecture
# Copyright (c) 2022 Microsoft
# Adapted from LeViT and Swin Transformer
#   LeViT: (https://github.com/facebookresearch/levit)
#   Swin: (https://github.com/microsoft/swin-transformer)
# Build the TinyViT Model
# --------------------------------------------------------

import itertools
from typing import Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from ultralytics.nn.modules import LayerNorm2d
from ultralytics.utils.instance import to_2tuple


class Conv2d_BN(torch.nn.Sequential):
    """
    A sequential container that performs 2D convolution followed by batch normalization.

    Attributes:
        c (torch.nn.Conv2d): 2D convolution layer.
        1 (torch.nn.BatchNorm2d): Batch normalization layer.

    Methods:
        __init__: Initializes the Conv2d_BN with specified parameters.

    Args:
        a (int): Number of input channels.
        b (int): Number of output channels.
        ks (int): Kernel size for the convolution. Defaults to 1.
        stride (int): Stride for the convolution. Defaults to 1.
        pad (int): Padding for the convolution. Defaults to 0.
        dilation (int): Dilation factor for the convolution. Defaults to 1.
        groups (int): Number of groups for the convolution. Defaults to 1.
        bn_weight_init (float): Initial value for batch normalization weight. Defaults to 1.

    Examples:
        >>> conv_bn = Conv2d_BN(3, 64, ks=3, stride=1, pad=1)
        >>> input_tensor = torch.randn(1, 3, 224, 224)
        >>> output = conv_bn(input_tensor)
        >>> print(output.shape)
    """

    def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
        """Initializes a sequential container with 2D convolution followed by batch normalization."""
        super().__init__()
        self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
        bn = torch.nn.BatchNorm2d(b)
        torch.nn.init.constant_(bn.weight, bn_weight_init)
        torch.nn.init.constant_(bn.bias, 0)
        self.add_module("bn", bn)


class PatchEmbed(nn.Module):
    """
    Embeds images into patches and projects them into a specified embedding dimension.

    Attributes:
        patches_resolution (Tuple[int, int]): Resolution of the patches after embedding.
        num_patches (int): Total number of patches.
        in_chans (int): Number of input channels.
        embed_dim (int): Dimension of the embedding.
        seq (nn.Sequential): Sequence of convolutional and activation layers for patch embedding.

    Methods:
        forward: Processes the input tensor through the patch embedding sequence.

    Examples:
        >>> import torch
        >>> patch_embed = PatchEmbed(in_chans=3, embed_dim=96, resolution=224, activation=nn.GELU)
        >>> x = torch.randn(1, 3, 224, 224)
        >>> output = patch_embed(x)
        >>> print(output.shape)
    """

    def __init__(self, in_chans, embed_dim, resolution, activation):
        """Initializes patch embedding with convolutional layers for image-to-patch conversion and projection."""
        super().__init__()
        img_size: Tuple[int, int] = to_2tuple(resolution)
        self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
        self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
        self.in_chans = in_chans
        self.embed_dim = embed_dim
        n = embed_dim
        self.seq = nn.Sequential(
            Conv2d_BN(in_chans, n // 2, 3, 2, 1),
            activation(),
            Conv2d_BN(n // 2, n, 3, 2, 1),
        )

    def forward(self, x):
        """Processes input tensor through patch embedding sequence, converting images to patch embeddings."""
        return self.seq(x)


class MBConv(nn.Module):
    """
    Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture.

    Attributes:
        in_chans (int): Number of input channels.
        hidden_chans (int): Number of hidden channels.
        out_chans (int): Number of output channels.
        conv1 (Conv2d_BN): First convolutional layer.
        act1 (nn.Module): First activation function.
        conv2 (Conv2d_BN): Depthwise convolutional layer.
        act2 (nn.Module): Second activation function.
        conv3 (Conv2d_BN): Final convolutional layer.
        act3 (nn.Module): Third activation function.
        drop_path (nn.Module): Drop path layer (Identity for inference).

    Methods:
        forward: Performs the forward pass through the MBConv layer.

    Examples:
        >>> in_chans, out_chans = 32, 64
        >>> mbconv = MBConv(in_chans, out_chans, expand_ratio=4, activation=nn.ReLU, drop_path=0.1)
        >>> x = torch.randn(1, in_chans, 56, 56)
        >>> output = mbconv(x)
        >>> print(output.shape)
        torch.Size([1, 64, 56, 56])
    """

    def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path):
        """Initializes the MBConv layer with specified input/output channels, expansion ratio, and activation."""
        super().__init__()
        self.in_chans = in_chans
        self.hidden_chans = int(in_chans * expand_ratio)
        self.out_chans = out_chans

        self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
        self.act1 = activation()

        self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans)
        self.act2 = activation()

        self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
        self.act3 = activation()

        # NOTE: `DropPath` is needed only for training.
        # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.drop_path = nn.Identity()

    def forward(self, x):
        """Implements the forward pass of MBConv, applying convolutions and skip connection."""
        shortcut = x
        x = self.conv1(x)
        x = self.act1(x)
        x = self.conv2(x)
        x = self.act2(x)
        x = self.conv3(x)
        x = self.drop_path(x)
        x += shortcut
        return self.act3(x)


class PatchMerging(nn.Module):
    """
    Merges neighboring patches in the feature map and projects to a new dimension.

    This class implements a patch merging operation that combines spatial information and adjusts the feature
    dimension. It uses a series of convolutional layers with batch normalization to achieve this.

    Attributes:
        input_resolution (Tuple[int, int]): The input resolution (height, width) of the feature map.
        dim (int): The input dimension of the feature map.
        out_dim (int): The output dimension after merging and projection.
        act (nn.Module): The activation function used between convolutions.
        conv1 (Conv2d_BN): The first convolutional layer for dimension projection.
        conv2 (Conv2d_BN): The second convolutional layer for spatial merging.
        conv3 (Conv2d_BN): The third convolutional layer for final projection.

    Methods:
        forward: Applies the patch merging operation to the input tensor.

    Examples:
        >>> input_resolution = (56, 56)
        >>> patch_merging = PatchMerging(input_resolution, dim=64, out_dim=128, activation=nn.ReLU)
        >>> x = torch.randn(4, 64, 56, 56)
        >>> output = patch_merging(x)
        >>> print(output.shape)
    """

    def __init__(self, input_resolution, dim, out_dim, activation):
        """Initializes the PatchMerging module for merging and projecting neighboring patches in feature maps."""
        super().__init__()

        self.input_resolution = input_resolution
        self.dim = dim
        self.out_dim = out_dim
        self.act = activation()
        self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
        stride_c = 1 if out_dim in {320, 448, 576} else 2
        self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
        self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)

    def forward(self, x):
        """Applies patch merging and dimension projection to the input feature map."""
        if x.ndim == 3:
            H, W = self.input_resolution
            B = len(x)
            # (B, C, H, W)
            x = x.view(B, H, W, -1).permute(0, 3, 1, 2)

        x = self.conv1(x)
        x = self.act(x)

        x = self.conv2(x)
        x = self.act(x)
        x = self.conv3(x)
        return x.flatten(2).transpose(1, 2)


class ConvLayer(nn.Module):
    """
    Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv).

    This layer optionally applies downsample operations to the output and supports gradient checkpointing.

    Attributes:
        dim (int): Dimensionality of the input and output.
        input_resolution (Tuple[int, int]): Resolution of the input image.
        depth (int): Number of MBConv layers in the block.
        use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
        blocks (nn.ModuleList): List of MBConv layers.
        downsample (Optional[Callable]): Function for downsampling the output.

    Methods:
        forward: Processes the input through the convolutional layers.

    Examples:
        >>> input_tensor = torch.randn(1, 64, 56, 56)
        >>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
        >>> output = conv_layer(input_tensor)
        >>> print(output.shape)
    """

    def __init__(
        self,
        dim,
        input_resolution,
        depth,
        activation,
        drop_path=0.0,
        downsample=None,
        use_checkpoint=False,
        out_dim=None,
        conv_expand_ratio=4.0,
    ):
        """
        Initializes the ConvLayer with the given dimensions and settings.

        This layer consists of multiple MobileNetV3-style inverted bottleneck convolutions (MBConv) and
        optionally applies downsampling to the output.

        Args:
            dim (int): The dimensionality of the input and output.
            input_resolution (Tuple[int, int]): The resolution of the input image.
            depth (int): The number of MBConv layers in the block.
            activation (Callable): Activation function applied after each convolution.
            drop_path (float | List[float]): Drop path rate. Single float or a list of floats for each MBConv.
            downsample (Optional[Callable]): Function for downsampling the output. None to skip downsampling.
            use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
            out_dim (Optional[int]): The dimensionality of the output. None means it will be the same as `dim`.
            conv_expand_ratio (float): Expansion ratio for the MBConv layers.

        Examples:
            >>> input_tensor = torch.randn(1, 64, 56, 56)
            >>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
            >>> output = conv_layer(input_tensor)
            >>> print(output.shape)
        """
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # Build blocks
        self.blocks = nn.ModuleList(
            [
                MBConv(
                    dim,
                    dim,
                    conv_expand_ratio,
                    activation,
                    drop_path[i] if isinstance(drop_path, list) else drop_path,
                )
                for i in range(depth)
            ]
        )

        # Patch merging layer
        self.downsample = (
            None
            if downsample is None
            else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
        )

    def forward(self, x):
        """Processes input through convolutional layers, applying MBConv blocks and optional downsampling."""
        for blk in self.blocks:
            x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
        return x if self.downsample is None else self.downsample(x)


class Mlp(nn.Module):
    """
    Multi-layer Perceptron (MLP) module for transformer architectures.

    This module applies layer normalization, two fully-connected layers with an activation function in between,
    and dropout. It is commonly used in transformer-based architectures.

    Attributes:
        norm (nn.LayerNorm): Layer normalization applied to the input.
        fc1 (nn.Linear): First fully-connected layer.
        fc2 (nn.Linear): Second fully-connected layer.
        act (nn.Module): Activation function applied after the first fully-connected layer.
        drop (nn.Dropout): Dropout layer applied after the activation function.

    Methods:
        forward: Applies the MLP operations on the input tensor.

    Examples:
        >>> import torch
        >>> from torch import nn
        >>> mlp = Mlp(in_features=256, hidden_features=512, out_features=256, act_layer=nn.GELU, drop=0.1)
        >>> x = torch.randn(32, 100, 256)
        >>> output = mlp(x)
        >>> print(output.shape)
        torch.Size([32, 100, 256])
    """

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
        """Initializes a multi-layer perceptron with configurable input, hidden, and output dimensions."""
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.norm = nn.LayerNorm(in_features)
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.act = act_layer()
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        """Applies MLP operations: layer norm, FC layers, activation, and dropout to the input tensor."""
        x = self.norm(x)
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        return self.drop(x)


class Attention(torch.nn.Module):
    """
    Multi-head attention module with spatial awareness and trainable attention biases.

    This module implements a multi-head attention mechanism with support for spatial awareness, applying
    attention biases based on spatial resolution. It includes trainable attention biases for each unique
    offset between spatial positions in the resolution grid.

    Attributes:
        num_heads (int): Number of attention heads.
        scale (float): Scaling factor for attention scores.
        key_dim (int): Dimensionality of the keys and queries.
        nh_kd (int): Product of num_heads and key_dim.
        d (int): Dimensionality of the value vectors.
        dh (int): Product of d and num_heads.
        attn_ratio (float): Attention ratio affecting the dimensions of the value vectors.
        norm (nn.LayerNorm): Layer normalization applied to input.
        qkv (nn.Linear): Linear layer for computing query, key, and value projections.
        proj (nn.Linear): Linear layer for final projection.
        attention_biases (nn.Parameter): Learnable attention biases.
        attention_bias_idxs (Tensor): Indices for attention biases.
        ab (Tensor): Cached attention biases for inference, deleted during training.

    Methods:
        train: Sets the module in training mode and handles the 'ab' attribute.
        forward: Performs the forward pass of the attention mechanism.

    Examples:
        >>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
        >>> x = torch.randn(1, 196, 256)
        >>> output = attn(x)
        >>> print(output.shape)
        torch.Size([1, 196, 256])
    """

    def __init__(
        self,
        dim,
        key_dim,
        num_heads=8,
        attn_ratio=4,
        resolution=(14, 14),
    ):
        """
        Initializes the Attention module for multi-head attention with spatial awareness.

        This module implements a multi-head attention mechanism with support for spatial awareness, applying
        attention biases based on spatial resolution. It includes trainable attention biases for each unique
        offset between spatial positions in the resolution grid.

        Args:
            dim (int): The dimensionality of the input and output.
            key_dim (int): The dimensionality of the keys and queries.
            num_heads (int): Number of attention heads. Default is 8.
            attn_ratio (float): Attention ratio, affecting the dimensions of the value vectors. Default is 4.
            resolution (Tuple[int, int]): Spatial resolution of the input feature map. Default is (14, 14).

        Raises:
            AssertionError: If 'resolution' is not a tuple of length 2.

        Examples:
            >>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
            >>> x = torch.randn(1, 196, 256)
            >>> output = attn(x)
            >>> print(output.shape)
            torch.Size([1, 196, 256])
        """
        super().__init__()

        assert isinstance(resolution, tuple) and len(resolution) == 2, "'resolution' argument not tuple of length 2"
        self.num_heads = num_heads
        self.scale = key_dim**-0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads
        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio
        h = self.dh + nh_kd * 2

        self.norm = nn.LayerNorm(dim)
        self.qkv = nn.Linear(dim, h)
        self.proj = nn.Linear(self.dh, dim)

        points = list(itertools.product(range(resolution[0]), range(resolution[1])))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False)

    @torch.no_grad()
    def train(self, mode=True):
        """Performs multi-head attention with spatial awareness and trainable attention biases."""
        super().train(mode)
        if mode and hasattr(self, "ab"):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]

    def forward(self, x):  # x
        """Applies multi-head attention with spatial awareness and trainable attention biases."""
        B, N, _ = x.shape  # B, N, C

        # Normalization
        x = self.norm(x)

        qkv = self.qkv(x)
        # (B, N, num_heads, d)
        q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
        # (B, num_heads, N, d)
        q = q.permute(0, 2, 1, 3)
        k = k.permute(0, 2, 1, 3)
        v = v.permute(0, 2, 1, 3)
        self.ab = self.ab.to(self.attention_biases.device)

        attn = (q @ k.transpose(-2, -1)) * self.scale + (
            self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
        )
        attn = attn.softmax(dim=-1)
        x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
        return self.proj(x)


class TinyViTBlock(nn.Module):
    """
    TinyViT Block that applies self-attention and a local convolution to the input.

    This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
    local convolutions to process input features efficiently.

    Attributes:
        dim (int): The dimensionality of the input and output.
        input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
        num_heads (int): Number of attention heads.
        window_size (int): Size of the attention window.
        mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
        drop_path (nn.Module): Stochastic depth layer, identity function during inference.
        attn (Attention): Self-attention module.
        mlp (Mlp): Multi-layer perceptron module.
        local_conv (Conv2d_BN): Depth-wise local convolution layer.

    Methods:
        forward: Processes the input through the TinyViT block.
        extra_repr: Returns a string with extra information about the block's parameters.

    Examples:
        >>> input_tensor = torch.randn(1, 196, 192)
        >>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
        >>> output = block(input_tensor)
        >>> print(output.shape)
        torch.Size([1, 196, 192])
    """

    def __init__(
        self,
        dim,
        input_resolution,
        num_heads,
        window_size=7,
        mlp_ratio=4.0,
        drop=0.0,
        drop_path=0.0,
        local_conv_size=3,
        activation=nn.GELU,
    ):
        """
        Initializes a TinyViT block with self-attention and local convolution.

        This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
        local convolutions to process input features efficiently.

        Args:
            dim (int): Dimensionality of the input and output features.
            input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width).
            num_heads (int): Number of attention heads.
            window_size (int): Size of the attention window. Must be greater than 0.
            mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
            drop (float): Dropout rate.
            drop_path (float): Stochastic depth rate.
            local_conv_size (int): Kernel size of the local convolution.
            activation (torch.nn.Module): Activation function for MLP.

        Raises:
            AssertionError: If window_size is not greater than 0.
            AssertionError: If dim is not divisible by num_heads.

        Examples:
            >>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
            >>> input_tensor = torch.randn(1, 196, 192)
            >>> output = block(input_tensor)
            >>> print(output.shape)
            torch.Size([1, 196, 192])
        """
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        assert window_size > 0, "window_size must be greater than 0"
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio

        # NOTE: `DropPath` is needed only for training.
        # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.drop_path = nn.Identity()

        assert dim % num_heads == 0, "dim must be divisible by num_heads"
        head_dim = dim // num_heads

        window_resolution = (window_size, window_size)
        self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution)

        mlp_hidden_dim = int(dim * mlp_ratio)
        mlp_activation = activation
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop)

        pad = local_conv_size // 2
        self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)

    def forward(self, x):
        """Applies self-attention, local convolution, and MLP operations to the input tensor."""
        h, w = self.input_resolution
        b, hw, c = x.shape  # batch, height*width, channels
        assert hw == h * w, "input feature has wrong size"
        res_x = x
        if h == self.window_size and w == self.window_size:
            x = self.attn(x)
        else:
            x = x.view(b, h, w, c)
            pad_b = (self.window_size - h % self.window_size) % self.window_size
            pad_r = (self.window_size - w % self.window_size) % self.window_size
            padding = pad_b > 0 or pad_r > 0
            if padding:
                x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))

            pH, pW = h + pad_b, w + pad_r
            nH = pH // self.window_size
            nW = pW // self.window_size

            # Window partition
            x = (
                x.view(b, nH, self.window_size, nW, self.window_size, c)
                .transpose(2, 3)
                .reshape(b * nH * nW, self.window_size * self.window_size, c)
            )
            x = self.attn(x)

            # Window reverse
            x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c)
            if padding:
                x = x[:, :h, :w].contiguous()

            x = x.view(b, hw, c)

        x = res_x + self.drop_path(x)
        x = x.transpose(1, 2).reshape(b, c, h, w)
        x = self.local_conv(x)
        x = x.view(b, c, hw).transpose(1, 2)

        return x + self.drop_path(self.mlp(x))

    def extra_repr(self) -> str:
        """
        Returns a string representation of the TinyViTBlock's parameters.

        This method provides a formatted string containing key information about the TinyViTBlock, including its
        dimension, input resolution, number of attention heads, window size, and MLP ratio.

        Returns:
            (str): A formatted string containing the block's parameters.

        Examples:
            >>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0)
            >>> print(block.extra_repr())
            dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0
        """
        return (
            f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
            f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
        )


class BasicLayer(nn.Module):
    """
    A basic TinyViT layer for one stage in a TinyViT architecture.

    This class represents a single layer in the TinyViT model, consisting of multiple TinyViT blocks
    and an optional downsampling operation.

    Attributes:
        dim (int): The dimensionality of the input and output features.
        input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
        depth (int): Number of TinyViT blocks in this layer.
        use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
        blocks (nn.ModuleList): List of TinyViT blocks that make up this layer.
        downsample (nn.Module | None): Downsample layer at the end of the layer, if specified.

    Methods:
        forward: Processes the input through the layer's blocks and optional downsampling.
        extra_repr: Returns a string with the layer's parameters for printing.

    Examples:
        >>> input_tensor = torch.randn(1, 3136, 192)
        >>> layer = BasicLayer(dim=192, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
        >>> output = layer(input_tensor)
        >>> print(output.shape)
        torch.Size([1, 784, 384])
    """

    def __init__(
        self,
        dim,
        input_resolution,
        depth,
        num_heads,
        window_size,
        mlp_ratio=4.0,
        drop=0.0,
        drop_path=0.0,
        downsample=None,
        use_checkpoint=False,
        local_conv_size=3,
        activation=nn.GELU,
        out_dim=None,
    ):
        """
        Initializes a BasicLayer in the TinyViT architecture.

        This layer consists of multiple TinyViT blocks and an optional downsampling operation. It is designed to
        process feature maps at a specific resolution and dimensionality within the TinyViT model.

        Args:
            dim (int): Dimensionality of the input and output features.
            input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width).
            depth (int): Number of TinyViT blocks in this layer.
            num_heads (int): Number of attention heads in each TinyViT block.
            window_size (int): Size of the local window for attention computation.
            mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
            drop (float): Dropout rate.
            drop_path (float | List[float]): Stochastic depth rate. Can be a float or a list of floats for each block.
            downsample (nn.Module | None): Downsampling layer at the end of the layer. None to skip downsampling.
            use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
            local_conv_size (int): Kernel size for the local convolution in each TinyViT block.
            activation (nn.Module): Activation function used in the MLP.
            out_dim (int | None): Output dimension after downsampling. None means it will be the same as `dim`.

        Raises:
            ValueError: If `drop_path` is a list and its length doesn't match `depth`.

        Examples:
            >>> layer = BasicLayer(dim=96, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
            >>> x = torch.randn(1, 56 * 56, 96)
            >>> output = layer(x)
            >>> print(output.shape)
        """
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # Build blocks
        self.blocks = nn.ModuleList(
            [
                TinyViTBlock(
                    dim=dim,
                    input_resolution=input_resolution,
                    num_heads=num_heads,
                    window_size=window_size,
                    mlp_ratio=mlp_ratio,
                    drop=drop,
                    drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                    local_conv_size=local_conv_size,
                    activation=activation,
                )
                for i in range(depth)
            ]
        )

        # Patch merging layer
        self.downsample = (
            None
            if downsample is None
            else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
        )

    def forward(self, x):
        """Processes input through TinyViT blocks and optional downsampling."""
        for blk in self.blocks:
            x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
        return x if self.downsample is None else self.downsample(x)

    def extra_repr(self) -> str:
        """Returns a string with the layer's parameters for printing."""
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"


class TinyViT(nn.Module):
    """
    TinyViT: A compact vision transformer architecture for efficient image classification and feature extraction.

    This class implements the TinyViT model, which combines elements of vision transformers and convolutional
    neural networks for improved efficiency and performance on vision tasks.

    Attributes:
        img_size (int): Input image size.
        num_classes (int): Number of classification classes.
        depths (List[int]): Number of blocks in each stage.
        num_layers (int): Total number of layers in the network.
        mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
        patch_embed (PatchEmbed): Module for patch embedding.
        patches_resolution (Tuple[int, int]): Resolution of embedded patches.
        layers (nn.ModuleList): List of network layers.
        norm_head (nn.LayerNorm): Layer normalization for the classifier head.
        head (nn.Linear): Linear layer for final classification.
        neck (nn.Sequential): Neck module for feature refinement.

    Methods:
        set_layer_lr_decay: Sets layer-wise learning rate decay.
        _init_weights: Initializes weights for linear and normalization layers.
        no_weight_decay_keywords: Returns keywords for parameters that should not use weight decay.
        forward_features: Processes input through the feature extraction layers.
        forward: Performs a forward pass through the entire network.

    Examples:
        >>> model = TinyViT(img_size=224, num_classes=1000)
        >>> x = torch.randn(1, 3, 224, 224)
        >>> features = model.forward_features(x)
        >>> print(features.shape)
        torch.Size([1, 256, 64, 64])
    """

    def __init__(
        self,
        img_size=224,
        in_chans=3,
        num_classes=1000,
        embed_dims=(96, 192, 384, 768),
        depths=(2, 2, 6, 2),
        num_heads=(3, 6, 12, 24),
        window_sizes=(7, 7, 14, 7),
        mlp_ratio=4.0,
        drop_rate=0.0,
        drop_path_rate=0.1,
        use_checkpoint=False,
        mbconv_expand_ratio=4.0,
        local_conv_size=3,
        layer_lr_decay=1.0,
    ):
        """
        Initializes the TinyViT model.

        This constructor sets up the TinyViT architecture, including patch embedding, multiple layers of
        attention and convolution blocks, and a classification head.

        Args:
            img_size (int): Size of the input image. Default is 224.
            in_chans (int): Number of input channels. Default is 3.
            num_classes (int): Number of classes for classification. Default is 1000.
            embed_dims (Tuple[int, int, int, int]): Embedding dimensions for each stage.
                Default is (96, 192, 384, 768).
            depths (Tuple[int, int, int, int]): Number of blocks in each stage. Default is (2, 2, 6, 2).
            num_heads (Tuple[int, int, int, int]): Number of attention heads in each stage.
                Default is (3, 6, 12, 24).
            window_sizes (Tuple[int, int, int, int]): Window sizes for each stage. Default is (7, 7, 14, 7).
            mlp_ratio (float): Ratio of MLP hidden dim to embedding dim. Default is 4.0.
            drop_rate (float): Dropout rate. Default is 0.0.
            drop_path_rate (float): Stochastic depth rate. Default is 0.1.
            use_checkpoint (bool): Whether to use checkpointing to save memory. Default is False.
            mbconv_expand_ratio (float): Expansion ratio for MBConv layer. Default is 4.0.
            local_conv_size (int): Kernel size for local convolutions. Default is 3.
            layer_lr_decay (float): Layer-wise learning rate decay factor. Default is 1.0.

        Examples:
            >>> model = TinyViT(img_size=224, num_classes=1000)
            >>> x = torch.randn(1, 3, 224, 224)
            >>> output = model(x)
            >>> print(output.shape)
            torch.Size([1, 1000])
        """
        super().__init__()
        self.img_size = img_size
        self.num_classes = num_classes
        self.depths = depths
        self.num_layers = len(depths)
        self.mlp_ratio = mlp_ratio

        activation = nn.GELU

        self.patch_embed = PatchEmbed(
            in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation
        )

        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # Stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # Build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            kwargs = dict(
                dim=embed_dims[i_layer],
                input_resolution=(
                    patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
                    patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
                ),
                #   input_resolution=(patches_resolution[0] // (2 ** i_layer),
                #                     patches_resolution[1] // (2 ** i_layer)),
                depth=depths[i_layer],
                drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                use_checkpoint=use_checkpoint,
                out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)],
                activation=activation,
            )
            if i_layer == 0:
                layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs)
            else:
                layer = BasicLayer(
                    num_heads=num_heads[i_layer],
                    window_size=window_sizes[i_layer],
                    mlp_ratio=self.mlp_ratio,
                    drop=drop_rate,
                    local_conv_size=local_conv_size,
                    **kwargs,
                )
            self.layers.append(layer)

        # Classifier head
        self.norm_head = nn.LayerNorm(embed_dims[-1])
        self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()

        # Init weights
        self.apply(self._init_weights)
        self.set_layer_lr_decay(layer_lr_decay)
        self.neck = nn.Sequential(
            nn.Conv2d(
                embed_dims[-1],
                256,
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(256),
            nn.Conv2d(
                256,
                256,
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(256),
        )

    def set_layer_lr_decay(self, layer_lr_decay):
        """Sets layer-wise learning rate decay for the TinyViT model based on depth."""
        decay_rate = layer_lr_decay

        # Layers -> blocks (depth)
        depth = sum(self.depths)
        lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]

        def _set_lr_scale(m, scale):
            """Sets the learning rate scale for each layer in the model based on the layer's depth."""
            for p in m.parameters():
                p.lr_scale = scale

        self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
        i = 0
        for layer in self.layers:
            for block in layer.blocks:
                block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
                i += 1
            if layer.downsample is not None:
                layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1]))
        assert i == depth
        for m in [self.norm_head, self.head]:
            m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))

        for k, p in self.named_parameters():
            p.param_name = k

        def _check_lr_scale(m):
            """Checks if the learning rate scale attribute is present in module's parameters."""
            for p in m.parameters():
                assert hasattr(p, "lr_scale"), p.param_name

        self.apply(_check_lr_scale)

    @staticmethod
    def _init_weights(m):
        """Initializes weights for linear and normalization layers in the TinyViT model."""
        if isinstance(m, nn.Linear):
            # NOTE: This initialization is needed only for training.
            # trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        """Returns a set of keywords for parameters that should not use weight decay."""
        return {"attention_biases"}

    def forward_features(self, x):
        """Processes input through feature extraction layers, returning spatial features."""
        x = self.patch_embed(x)  # x input is (N, C, H, W)

        x = self.layers[0](x)
        start_i = 1

        for i in range(start_i, len(self.layers)):
            layer = self.layers[i]
            x = layer(x)
        batch, _, channel = x.shape
        x = x.view(batch, self.patches_resolution[0] // 4, self.patches_resolution[1] // 4, channel)
        x = x.permute(0, 3, 1, 2)
        return self.neck(x)

    def forward(self, x):
        """Performs the forward pass through the TinyViT model, extracting features from the input image."""
        return self.forward_features(x)

    def set_imgsz(self, imgsz=[1024, 1024]):
        """
        Set image size to make model compatible with different image sizes.

        Args:
            imgsz (Tuple[int, int]): The size of the input image.
        """
        imgsz = [s // 4 for s in imgsz]
        self.patches_resolution = imgsz
        for i, layer in enumerate(self.layers):
            input_resolution = (
                imgsz[0] // (2 ** (i - 1 if i == 3 else i)),
                imgsz[1] // (2 ** (i - 1 if i == 3 else i)),
            )
            layer.input_resolution = input_resolution
            if layer.downsample is not None:
                layer.downsample.input_resolution = input_resolution
            if isinstance(layer, BasicLayer):
                for b in layer.blocks:
                    b.input_resolution = input_resolution