Spaces:
Running
Running
File size: 41,372 Bytes
1999a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# --------------------------------------------------------
# TinyViT Model Architecture
# Copyright (c) 2022 Microsoft
# Adapted from LeViT and Swin Transformer
# LeViT: (https://github.com/facebookresearch/levit)
# Swin: (https://github.com/microsoft/swin-transformer)
# Build the TinyViT Model
# --------------------------------------------------------
import itertools
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from ultralytics.nn.modules import LayerNorm2d
from ultralytics.utils.instance import to_2tuple
class Conv2d_BN(torch.nn.Sequential):
"""
A sequential container that performs 2D convolution followed by batch normalization.
Attributes:
c (torch.nn.Conv2d): 2D convolution layer.
1 (torch.nn.BatchNorm2d): Batch normalization layer.
Methods:
__init__: Initializes the Conv2d_BN with specified parameters.
Args:
a (int): Number of input channels.
b (int): Number of output channels.
ks (int): Kernel size for the convolution. Defaults to 1.
stride (int): Stride for the convolution. Defaults to 1.
pad (int): Padding for the convolution. Defaults to 0.
dilation (int): Dilation factor for the convolution. Defaults to 1.
groups (int): Number of groups for the convolution. Defaults to 1.
bn_weight_init (float): Initial value for batch normalization weight. Defaults to 1.
Examples:
>>> conv_bn = Conv2d_BN(3, 64, ks=3, stride=1, pad=1)
>>> input_tensor = torch.randn(1, 3, 224, 224)
>>> output = conv_bn(input_tensor)
>>> print(output.shape)
"""
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
"""Initializes a sequential container with 2D convolution followed by batch normalization."""
super().__init__()
self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(bn.weight, bn_weight_init)
torch.nn.init.constant_(bn.bias, 0)
self.add_module("bn", bn)
class PatchEmbed(nn.Module):
"""
Embeds images into patches and projects them into a specified embedding dimension.
Attributes:
patches_resolution (Tuple[int, int]): Resolution of the patches after embedding.
num_patches (int): Total number of patches.
in_chans (int): Number of input channels.
embed_dim (int): Dimension of the embedding.
seq (nn.Sequential): Sequence of convolutional and activation layers for patch embedding.
Methods:
forward: Processes the input tensor through the patch embedding sequence.
Examples:
>>> import torch
>>> patch_embed = PatchEmbed(in_chans=3, embed_dim=96, resolution=224, activation=nn.GELU)
>>> x = torch.randn(1, 3, 224, 224)
>>> output = patch_embed(x)
>>> print(output.shape)
"""
def __init__(self, in_chans, embed_dim, resolution, activation):
"""Initializes patch embedding with convolutional layers for image-to-patch conversion and projection."""
super().__init__()
img_size: Tuple[int, int] = to_2tuple(resolution)
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
n = embed_dim
self.seq = nn.Sequential(
Conv2d_BN(in_chans, n // 2, 3, 2, 1),
activation(),
Conv2d_BN(n // 2, n, 3, 2, 1),
)
def forward(self, x):
"""Processes input tensor through patch embedding sequence, converting images to patch embeddings."""
return self.seq(x)
class MBConv(nn.Module):
"""
Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture.
Attributes:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
out_chans (int): Number of output channels.
conv1 (Conv2d_BN): First convolutional layer.
act1 (nn.Module): First activation function.
conv2 (Conv2d_BN): Depthwise convolutional layer.
act2 (nn.Module): Second activation function.
conv3 (Conv2d_BN): Final convolutional layer.
act3 (nn.Module): Third activation function.
drop_path (nn.Module): Drop path layer (Identity for inference).
Methods:
forward: Performs the forward pass through the MBConv layer.
Examples:
>>> in_chans, out_chans = 32, 64
>>> mbconv = MBConv(in_chans, out_chans, expand_ratio=4, activation=nn.ReLU, drop_path=0.1)
>>> x = torch.randn(1, in_chans, 56, 56)
>>> output = mbconv(x)
>>> print(output.shape)
torch.Size([1, 64, 56, 56])
"""
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path):
"""Initializes the MBConv layer with specified input/output channels, expansion ratio, and activation."""
super().__init__()
self.in_chans = in_chans
self.hidden_chans = int(in_chans * expand_ratio)
self.out_chans = out_chans
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
self.act1 = activation()
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans)
self.act2 = activation()
self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
self.act3 = activation()
# NOTE: `DropPath` is needed only for training.
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
def forward(self, x):
"""Implements the forward pass of MBConv, applying convolutions and skip connection."""
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
x = self.conv3(x)
x = self.drop_path(x)
x += shortcut
return self.act3(x)
class PatchMerging(nn.Module):
"""
Merges neighboring patches in the feature map and projects to a new dimension.
This class implements a patch merging operation that combines spatial information and adjusts the feature
dimension. It uses a series of convolutional layers with batch normalization to achieve this.
Attributes:
input_resolution (Tuple[int, int]): The input resolution (height, width) of the feature map.
dim (int): The input dimension of the feature map.
out_dim (int): The output dimension after merging and projection.
act (nn.Module): The activation function used between convolutions.
conv1 (Conv2d_BN): The first convolutional layer for dimension projection.
conv2 (Conv2d_BN): The second convolutional layer for spatial merging.
conv3 (Conv2d_BN): The third convolutional layer for final projection.
Methods:
forward: Applies the patch merging operation to the input tensor.
Examples:
>>> input_resolution = (56, 56)
>>> patch_merging = PatchMerging(input_resolution, dim=64, out_dim=128, activation=nn.ReLU)
>>> x = torch.randn(4, 64, 56, 56)
>>> output = patch_merging(x)
>>> print(output.shape)
"""
def __init__(self, input_resolution, dim, out_dim, activation):
"""Initializes the PatchMerging module for merging and projecting neighboring patches in feature maps."""
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.out_dim = out_dim
self.act = activation()
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
stride_c = 1 if out_dim in {320, 448, 576} else 2
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
def forward(self, x):
"""Applies patch merging and dimension projection to the input feature map."""
if x.ndim == 3:
H, W = self.input_resolution
B = len(x)
# (B, C, H, W)
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
x = self.conv1(x)
x = self.act(x)
x = self.conv2(x)
x = self.act(x)
x = self.conv3(x)
return x.flatten(2).transpose(1, 2)
class ConvLayer(nn.Module):
"""
Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv).
This layer optionally applies downsample operations to the output and supports gradient checkpointing.
Attributes:
dim (int): Dimensionality of the input and output.
input_resolution (Tuple[int, int]): Resolution of the input image.
depth (int): Number of MBConv layers in the block.
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
blocks (nn.ModuleList): List of MBConv layers.
downsample (Optional[Callable]): Function for downsampling the output.
Methods:
forward: Processes the input through the convolutional layers.
Examples:
>>> input_tensor = torch.randn(1, 64, 56, 56)
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
>>> output = conv_layer(input_tensor)
>>> print(output.shape)
"""
def __init__(
self,
dim,
input_resolution,
depth,
activation,
drop_path=0.0,
downsample=None,
use_checkpoint=False,
out_dim=None,
conv_expand_ratio=4.0,
):
"""
Initializes the ConvLayer with the given dimensions and settings.
This layer consists of multiple MobileNetV3-style inverted bottleneck convolutions (MBConv) and
optionally applies downsampling to the output.
Args:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): The resolution of the input image.
depth (int): The number of MBConv layers in the block.
activation (Callable): Activation function applied after each convolution.
drop_path (float | List[float]): Drop path rate. Single float or a list of floats for each MBConv.
downsample (Optional[Callable]): Function for downsampling the output. None to skip downsampling.
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
out_dim (Optional[int]): The dimensionality of the output. None means it will be the same as `dim`.
conv_expand_ratio (float): Expansion ratio for the MBConv layers.
Examples:
>>> input_tensor = torch.randn(1, 64, 56, 56)
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
>>> output = conv_layer(input_tensor)
>>> print(output.shape)
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# Build blocks
self.blocks = nn.ModuleList(
[
MBConv(
dim,
dim,
conv_expand_ratio,
activation,
drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(depth)
]
)
# Patch merging layer
self.downsample = (
None
if downsample is None
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
)
def forward(self, x):
"""Processes input through convolutional layers, applying MBConv blocks and optional downsampling."""
for blk in self.blocks:
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
return x if self.downsample is None else self.downsample(x)
class Mlp(nn.Module):
"""
Multi-layer Perceptron (MLP) module for transformer architectures.
This module applies layer normalization, two fully-connected layers with an activation function in between,
and dropout. It is commonly used in transformer-based architectures.
Attributes:
norm (nn.LayerNorm): Layer normalization applied to the input.
fc1 (nn.Linear): First fully-connected layer.
fc2 (nn.Linear): Second fully-connected layer.
act (nn.Module): Activation function applied after the first fully-connected layer.
drop (nn.Dropout): Dropout layer applied after the activation function.
Methods:
forward: Applies the MLP operations on the input tensor.
Examples:
>>> import torch
>>> from torch import nn
>>> mlp = Mlp(in_features=256, hidden_features=512, out_features=256, act_layer=nn.GELU, drop=0.1)
>>> x = torch.randn(32, 100, 256)
>>> output = mlp(x)
>>> print(output.shape)
torch.Size([32, 100, 256])
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
"""Initializes a multi-layer perceptron with configurable input, hidden, and output dimensions."""
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.norm = nn.LayerNorm(in_features)
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
self.act = act_layer()
self.drop = nn.Dropout(drop)
def forward(self, x):
"""Applies MLP operations: layer norm, FC layers, activation, and dropout to the input tensor."""
x = self.norm(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
return self.drop(x)
class Attention(torch.nn.Module):
"""
Multi-head attention module with spatial awareness and trainable attention biases.
This module implements a multi-head attention mechanism with support for spatial awareness, applying
attention biases based on spatial resolution. It includes trainable attention biases for each unique
offset between spatial positions in the resolution grid.
Attributes:
num_heads (int): Number of attention heads.
scale (float): Scaling factor for attention scores.
key_dim (int): Dimensionality of the keys and queries.
nh_kd (int): Product of num_heads and key_dim.
d (int): Dimensionality of the value vectors.
dh (int): Product of d and num_heads.
attn_ratio (float): Attention ratio affecting the dimensions of the value vectors.
norm (nn.LayerNorm): Layer normalization applied to input.
qkv (nn.Linear): Linear layer for computing query, key, and value projections.
proj (nn.Linear): Linear layer for final projection.
attention_biases (nn.Parameter): Learnable attention biases.
attention_bias_idxs (Tensor): Indices for attention biases.
ab (Tensor): Cached attention biases for inference, deleted during training.
Methods:
train: Sets the module in training mode and handles the 'ab' attribute.
forward: Performs the forward pass of the attention mechanism.
Examples:
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
>>> x = torch.randn(1, 196, 256)
>>> output = attn(x)
>>> print(output.shape)
torch.Size([1, 196, 256])
"""
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=(14, 14),
):
"""
Initializes the Attention module for multi-head attention with spatial awareness.
This module implements a multi-head attention mechanism with support for spatial awareness, applying
attention biases based on spatial resolution. It includes trainable attention biases for each unique
offset between spatial positions in the resolution grid.
Args:
dim (int): The dimensionality of the input and output.
key_dim (int): The dimensionality of the keys and queries.
num_heads (int): Number of attention heads. Default is 8.
attn_ratio (float): Attention ratio, affecting the dimensions of the value vectors. Default is 4.
resolution (Tuple[int, int]): Spatial resolution of the input feature map. Default is (14, 14).
Raises:
AssertionError: If 'resolution' is not a tuple of length 2.
Examples:
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
>>> x = torch.randn(1, 196, 256)
>>> output = attn(x)
>>> print(output.shape)
torch.Size([1, 196, 256])
"""
super().__init__()
assert isinstance(resolution, tuple) and len(resolution) == 2, "'resolution' argument not tuple of length 2"
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.norm = nn.LayerNorm(dim)
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(itertools.product(range(resolution[0]), range(resolution[1])))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False)
@torch.no_grad()
def train(self, mode=True):
"""Performs multi-head attention with spatial awareness and trainable attention biases."""
super().train(mode)
if mode and hasattr(self, "ab"):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x
"""Applies multi-head attention with spatial awareness and trainable attention biases."""
B, N, _ = x.shape # B, N, C
# Normalization
x = self.norm(x)
qkv = self.qkv(x)
# (B, N, num_heads, d)
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
# (B, num_heads, N, d)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
self.ab = self.ab.to(self.attention_biases.device)
attn = (q @ k.transpose(-2, -1)) * self.scale + (
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
return self.proj(x)
class TinyViTBlock(nn.Module):
"""
TinyViT Block that applies self-attention and a local convolution to the input.
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
local convolutions to process input features efficiently.
Attributes:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
num_heads (int): Number of attention heads.
window_size (int): Size of the attention window.
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
drop_path (nn.Module): Stochastic depth layer, identity function during inference.
attn (Attention): Self-attention module.
mlp (Mlp): Multi-layer perceptron module.
local_conv (Conv2d_BN): Depth-wise local convolution layer.
Methods:
forward: Processes the input through the TinyViT block.
extra_repr: Returns a string with extra information about the block's parameters.
Examples:
>>> input_tensor = torch.randn(1, 196, 192)
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
>>> output = block(input_tensor)
>>> print(output.shape)
torch.Size([1, 196, 192])
"""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
local_conv_size=3,
activation=nn.GELU,
):
"""
Initializes a TinyViT block with self-attention and local convolution.
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
local convolutions to process input features efficiently.
Args:
dim (int): Dimensionality of the input and output features.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width).
num_heads (int): Number of attention heads.
window_size (int): Size of the attention window. Must be greater than 0.
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
drop (float): Dropout rate.
drop_path (float): Stochastic depth rate.
local_conv_size (int): Kernel size of the local convolution.
activation (torch.nn.Module): Activation function for MLP.
Raises:
AssertionError: If window_size is not greater than 0.
AssertionError: If dim is not divisible by num_heads.
Examples:
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
>>> input_tensor = torch.randn(1, 196, 192)
>>> output = block(input_tensor)
>>> print(output.shape)
torch.Size([1, 196, 192])
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
assert window_size > 0, "window_size must be greater than 0"
self.window_size = window_size
self.mlp_ratio = mlp_ratio
# NOTE: `DropPath` is needed only for training.
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
assert dim % num_heads == 0, "dim must be divisible by num_heads"
head_dim = dim // num_heads
window_resolution = (window_size, window_size)
self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution)
mlp_hidden_dim = int(dim * mlp_ratio)
mlp_activation = activation
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop)
pad = local_conv_size // 2
self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
def forward(self, x):
"""Applies self-attention, local convolution, and MLP operations to the input tensor."""
h, w = self.input_resolution
b, hw, c = x.shape # batch, height*width, channels
assert hw == h * w, "input feature has wrong size"
res_x = x
if h == self.window_size and w == self.window_size:
x = self.attn(x)
else:
x = x.view(b, h, w, c)
pad_b = (self.window_size - h % self.window_size) % self.window_size
pad_r = (self.window_size - w % self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = h + pad_b, w + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# Window partition
x = (
x.view(b, nH, self.window_size, nW, self.window_size, c)
.transpose(2, 3)
.reshape(b * nH * nW, self.window_size * self.window_size, c)
)
x = self.attn(x)
# Window reverse
x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c)
if padding:
x = x[:, :h, :w].contiguous()
x = x.view(b, hw, c)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(b, c, h, w)
x = self.local_conv(x)
x = x.view(b, c, hw).transpose(1, 2)
return x + self.drop_path(self.mlp(x))
def extra_repr(self) -> str:
"""
Returns a string representation of the TinyViTBlock's parameters.
This method provides a formatted string containing key information about the TinyViTBlock, including its
dimension, input resolution, number of attention heads, window size, and MLP ratio.
Returns:
(str): A formatted string containing the block's parameters.
Examples:
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0)
>>> print(block.extra_repr())
dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0
"""
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
)
class BasicLayer(nn.Module):
"""
A basic TinyViT layer for one stage in a TinyViT architecture.
This class represents a single layer in the TinyViT model, consisting of multiple TinyViT blocks
and an optional downsampling operation.
Attributes:
dim (int): The dimensionality of the input and output features.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
depth (int): Number of TinyViT blocks in this layer.
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
blocks (nn.ModuleList): List of TinyViT blocks that make up this layer.
downsample (nn.Module | None): Downsample layer at the end of the layer, if specified.
Methods:
forward: Processes the input through the layer's blocks and optional downsampling.
extra_repr: Returns a string with the layer's parameters for printing.
Examples:
>>> input_tensor = torch.randn(1, 3136, 192)
>>> layer = BasicLayer(dim=192, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
>>> output = layer(input_tensor)
>>> print(output.shape)
torch.Size([1, 784, 384])
"""
def __init__(
self,
dim,
input_resolution,
depth,
num_heads,
window_size,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
downsample=None,
use_checkpoint=False,
local_conv_size=3,
activation=nn.GELU,
out_dim=None,
):
"""
Initializes a BasicLayer in the TinyViT architecture.
This layer consists of multiple TinyViT blocks and an optional downsampling operation. It is designed to
process feature maps at a specific resolution and dimensionality within the TinyViT model.
Args:
dim (int): Dimensionality of the input and output features.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width).
depth (int): Number of TinyViT blocks in this layer.
num_heads (int): Number of attention heads in each TinyViT block.
window_size (int): Size of the local window for attention computation.
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
drop (float): Dropout rate.
drop_path (float | List[float]): Stochastic depth rate. Can be a float or a list of floats for each block.
downsample (nn.Module | None): Downsampling layer at the end of the layer. None to skip downsampling.
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
local_conv_size (int): Kernel size for the local convolution in each TinyViT block.
activation (nn.Module): Activation function used in the MLP.
out_dim (int | None): Output dimension after downsampling. None means it will be the same as `dim`.
Raises:
ValueError: If `drop_path` is a list and its length doesn't match `depth`.
Examples:
>>> layer = BasicLayer(dim=96, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
>>> x = torch.randn(1, 56 * 56, 96)
>>> output = layer(x)
>>> print(output.shape)
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# Build blocks
self.blocks = nn.ModuleList(
[
TinyViTBlock(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
local_conv_size=local_conv_size,
activation=activation,
)
for i in range(depth)
]
)
# Patch merging layer
self.downsample = (
None
if downsample is None
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
)
def forward(self, x):
"""Processes input through TinyViT blocks and optional downsampling."""
for blk in self.blocks:
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
return x if self.downsample is None else self.downsample(x)
def extra_repr(self) -> str:
"""Returns a string with the layer's parameters for printing."""
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class TinyViT(nn.Module):
"""
TinyViT: A compact vision transformer architecture for efficient image classification and feature extraction.
This class implements the TinyViT model, which combines elements of vision transformers and convolutional
neural networks for improved efficiency and performance on vision tasks.
Attributes:
img_size (int): Input image size.
num_classes (int): Number of classification classes.
depths (List[int]): Number of blocks in each stage.
num_layers (int): Total number of layers in the network.
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
patch_embed (PatchEmbed): Module for patch embedding.
patches_resolution (Tuple[int, int]): Resolution of embedded patches.
layers (nn.ModuleList): List of network layers.
norm_head (nn.LayerNorm): Layer normalization for the classifier head.
head (nn.Linear): Linear layer for final classification.
neck (nn.Sequential): Neck module for feature refinement.
Methods:
set_layer_lr_decay: Sets layer-wise learning rate decay.
_init_weights: Initializes weights for linear and normalization layers.
no_weight_decay_keywords: Returns keywords for parameters that should not use weight decay.
forward_features: Processes input through the feature extraction layers.
forward: Performs a forward pass through the entire network.
Examples:
>>> model = TinyViT(img_size=224, num_classes=1000)
>>> x = torch.randn(1, 3, 224, 224)
>>> features = model.forward_features(x)
>>> print(features.shape)
torch.Size([1, 256, 64, 64])
"""
def __init__(
self,
img_size=224,
in_chans=3,
num_classes=1000,
embed_dims=(96, 192, 384, 768),
depths=(2, 2, 6, 2),
num_heads=(3, 6, 12, 24),
window_sizes=(7, 7, 14, 7),
mlp_ratio=4.0,
drop_rate=0.0,
drop_path_rate=0.1,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=1.0,
):
"""
Initializes the TinyViT model.
This constructor sets up the TinyViT architecture, including patch embedding, multiple layers of
attention and convolution blocks, and a classification head.
Args:
img_size (int): Size of the input image. Default is 224.
in_chans (int): Number of input channels. Default is 3.
num_classes (int): Number of classes for classification. Default is 1000.
embed_dims (Tuple[int, int, int, int]): Embedding dimensions for each stage.
Default is (96, 192, 384, 768).
depths (Tuple[int, int, int, int]): Number of blocks in each stage. Default is (2, 2, 6, 2).
num_heads (Tuple[int, int, int, int]): Number of attention heads in each stage.
Default is (3, 6, 12, 24).
window_sizes (Tuple[int, int, int, int]): Window sizes for each stage. Default is (7, 7, 14, 7).
mlp_ratio (float): Ratio of MLP hidden dim to embedding dim. Default is 4.0.
drop_rate (float): Dropout rate. Default is 0.0.
drop_path_rate (float): Stochastic depth rate. Default is 0.1.
use_checkpoint (bool): Whether to use checkpointing to save memory. Default is False.
mbconv_expand_ratio (float): Expansion ratio for MBConv layer. Default is 4.0.
local_conv_size (int): Kernel size for local convolutions. Default is 3.
layer_lr_decay (float): Layer-wise learning rate decay factor. Default is 1.0.
Examples:
>>> model = TinyViT(img_size=224, num_classes=1000)
>>> x = torch.randn(1, 3, 224, 224)
>>> output = model(x)
>>> print(output.shape)
torch.Size([1, 1000])
"""
super().__init__()
self.img_size = img_size
self.num_classes = num_classes
self.depths = depths
self.num_layers = len(depths)
self.mlp_ratio = mlp_ratio
activation = nn.GELU
self.patch_embed = PatchEmbed(
in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation
)
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# Stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# Build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
kwargs = dict(
dim=embed_dims[i_layer],
input_resolution=(
patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
),
# input_resolution=(patches_resolution[0] // (2 ** i_layer),
# patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)],
activation=activation,
)
if i_layer == 0:
layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs)
else:
layer = BasicLayer(
num_heads=num_heads[i_layer],
window_size=window_sizes[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
local_conv_size=local_conv_size,
**kwargs,
)
self.layers.append(layer)
# Classifier head
self.norm_head = nn.LayerNorm(embed_dims[-1])
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
# Init weights
self.apply(self._init_weights)
self.set_layer_lr_decay(layer_lr_decay)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dims[-1],
256,
kernel_size=1,
bias=False,
),
LayerNorm2d(256),
nn.Conv2d(
256,
256,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(256),
)
def set_layer_lr_decay(self, layer_lr_decay):
"""Sets layer-wise learning rate decay for the TinyViT model based on depth."""
decay_rate = layer_lr_decay
# Layers -> blocks (depth)
depth = sum(self.depths)
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
def _set_lr_scale(m, scale):
"""Sets the learning rate scale for each layer in the model based on the layer's depth."""
for p in m.parameters():
p.lr_scale = scale
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
i = 0
for layer in self.layers:
for block in layer.blocks:
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
i += 1
if layer.downsample is not None:
layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1]))
assert i == depth
for m in [self.norm_head, self.head]:
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
for k, p in self.named_parameters():
p.param_name = k
def _check_lr_scale(m):
"""Checks if the learning rate scale attribute is present in module's parameters."""
for p in m.parameters():
assert hasattr(p, "lr_scale"), p.param_name
self.apply(_check_lr_scale)
@staticmethod
def _init_weights(m):
"""Initializes weights for linear and normalization layers in the TinyViT model."""
if isinstance(m, nn.Linear):
# NOTE: This initialization is needed only for training.
# trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay_keywords(self):
"""Returns a set of keywords for parameters that should not use weight decay."""
return {"attention_biases"}
def forward_features(self, x):
"""Processes input through feature extraction layers, returning spatial features."""
x = self.patch_embed(x) # x input is (N, C, H, W)
x = self.layers[0](x)
start_i = 1
for i in range(start_i, len(self.layers)):
layer = self.layers[i]
x = layer(x)
batch, _, channel = x.shape
x = x.view(batch, self.patches_resolution[0] // 4, self.patches_resolution[1] // 4, channel)
x = x.permute(0, 3, 1, 2)
return self.neck(x)
def forward(self, x):
"""Performs the forward pass through the TinyViT model, extracting features from the input image."""
return self.forward_features(x)
def set_imgsz(self, imgsz=[1024, 1024]):
"""
Set image size to make model compatible with different image sizes.
Args:
imgsz (Tuple[int, int]): The size of the input image.
"""
imgsz = [s // 4 for s in imgsz]
self.patches_resolution = imgsz
for i, layer in enumerate(self.layers):
input_resolution = (
imgsz[0] // (2 ** (i - 1 if i == 3 else i)),
imgsz[1] // (2 ** (i - 1 if i == 3 else i)),
)
layer.input_resolution = input_resolution
if layer.downsample is not None:
layer.downsample.input_resolution = input_resolution
if isinstance(layer, BasicLayer):
for b in layer.blocks:
b.input_resolution = input_resolution
|